

Oracle Siebel CRM 8
Developer's Handbook

A practical guide to configuring, automating, and
extending Siebel CRM applications

Alexander Hansal

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

Oracle Siebel CRM 8 Developer's Handbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author nor Packt Publishing
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2011

Production Reference: 1180411

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849681-86-5

www.packtpub.com

Cover Image by David Guettirrez (bilbaorocker@yahoo.co.uk)

Credits

Author
Alexander Hansal

Reviewer
Iain 'Oli' Ollerenshaw

Acquisition Editor
Amey Kanse

Development Editor
Hyacintha D'Souza

Technical Editors
Merwine Machado

Indexer
Monica Ajmera Mehta

Editorial Team Leader
Vinodhan Nair

Project Team Leader
Lata Basantani

Project Coordinator
Leena Purkait

Graphics
Geetanjali Sawant

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Alexander Hansal has worked for various companies and governmental
institutions as IT instructor and consultant. He started as a Siebel CRM instructor
for Siebel Systems Germany in 2001. Since the acquisition of Siebel Systems by
Oracle, Alexander has continued to support European customers as instructor
and consultant for Siebel CRM and Oracle Business Intelligence.

Strongly believing in the power of information sharing, Alexander regularly
discusses Siebel CRM and Oracle BI related topics on his weblog
(http://siebel-essentials.blogspot.com).

About the Reviewer

Iain 'Oli' Ollerenshaw is one of Europe's most experienced independent Siebel
professionals. He has spent over 10 years working with Siebel technology, beginning
with a key role at Siebel Systems during the early stages of the Siebel product
lifecycle. He has worked with several major Siebel clients in a number of sectors
including Energy, Life Sciences, Finance, Defence, and Public Sector. He lives in
Surrey, in the south-east of England, with his wife Debbie. They are expecting their
first child in 2011.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

•
•
•

For Jürgen

Table of Contents
Preface 1
Chapter 1: Siebel Tools and the Siebel Repository 7

Siebel Tools user interface 8
Title bar 9
Menu bar 10
Toolbar 11
Docking windows 12
Editors 14
Status bar 15
Navigating in Siebel Tools 15

Siebel Repository metadata 15
The data layer 17

Tables and columns 17
Interface tables 18
Indexes 18
Object type relationships in the Siebel data layer 18

The business layer 19
Business components, joins, and fields 19
Links 21
Business objects 22
Relationships of business layer and data layer objects 22

The presentation layer 23
Applets and controls 24
Views 24
Screens 25
Applications 25
Menus and toolbars 26
Relationships of presentation layer and business layer objects 26

The integration layer 27
Internal integration objects 27
External integration objects 29

Table of Contents

[ii]

The automation layer 29
Business services 29
Workflow processes 30
Tasks 31
Commands 31

The logical architecture of Siebel applications 32
Other object types 33

Summary 34
Chapter 2: Developer Tasks 35

Initializing the local database 36
Establishing network connectivity 37
Verifying settings in the client configuration files 37
Downloading and initializing the local database 38

Getting object definitions from the server database 39
Projects and objects 40
Siebel Tools Options 41
The development process 42

Checking out 43
Creating or modifying object definitions 45

New Object Wizards 46
Creating new records 47
Copying existing object definitions 47
Creating a new version of existing object definitions 47
Modification techniques 47

Validating object definitions 48
Compiling object definitions 49
Testing and debugging 49
Checking in 51

Local locking and prototyping 53
Archiving object definitions 53
Importing archived object definitions 54
Comparing object definitions 54
Searching the Siebel Repository 55
Integrating external source control systems 55
Automating developer tasks using command line options 56
Keeping the upgrade in mind 57
Summary 59

Chapter 3: Case Study Introduction 61
Background of All Hardware (AHA) 61
Description of AHA's business processes 62

Sales—Update Customer 62
Sales—Retail Order 63

Table of Contents

[iii]

Marketing—Campaign Tracking 64
Requirements for AHA 65

Sales—Update Customer 67
Sales—Retail Order 68

Summary 68
Chapter 4: Symbolic Strings 69

Understanding symbolic strings 69
Creating and using symbolic strings 72

Creating symbolic strings manually 72
Associating symbolic strings with objects 73
Using batch scripts to create symbolic strings automatically 74

Using strconv.bat to generate symbolic strings 75
Using strcons.bat to consolidate duplicate symbolic strings 77

Using message categories 78
Localizing Siebel applications 80
Summary 81

Chapter 5: Creating and Configuring Applets 83
Understanding applets and web templates 83

Applet web templates 84
Applet web template types 86

Creating and modifying form applets 87
Case study example: Creating a form applet 87

Copying an existing applet 90
Changing caption text using symbolic strings 90
Changing the association to a business component field 91
Deleting existing controls 92
Moving an existing control to a different location 92
Creating new controls 92
Creating new form sections 93
Formatting and aligning multiple controls 93
Setting the tab order 94
Copying controls from other applets using the compare objects window 94
Adding a show more/show less button 95
Setting controls to only appear in "more" mode 96
Adding standard buttons 96
Displaying data in the applet title 96
Setting applet properties for data operations 96
Compiling the new applet 97

Creating and modifying list applets 98
Case study example: Creating a list applet 99

Creating a new list applet using the Siebel Tools new object wizard 99
Editing the base layout template 101
Editing the query layout template 102

Table of Contents

[iv]

Other applet types 103
Configuring chart applets 103
Configuring tree applets 106
Configuring pick applets 107
Configuring multi-value-group (MVG) and associate applets 108

Summary 109
Chapter 6: Views and Screens 111

Understanding views and screens 111
Understanding views 112
Understanding screens 114
View web templates 116

Creating and modifying views 117
Case study example: Creating a new view 117

Creating a view using the new view wizard 118
Modifying a view in the view web layout editor 119
Adding applets to a view in the view web layout editor 119
Setting the applet mode property 120
Setting the thread bar properties of a view 120

Adding a view to a screen 121
Registering a new view 122

Testing a new view 123
Summary 124

Chapter 7: Business Components and Fields 125
Understanding business components 125

Visualizing business component definitions 128
Business components and SQL 128

Creating joins and fields 130
Case study example: Displaying data from joined tables 130

Case study example: Creating a join 131
Case study example: Creating single value fields 131
Case study example: Creating calculated fields 132
Case study example: Exposing a new field in an applet 135

Controlling field level behavior 137
Case study example: Field properties 138

Creating translatable validation messages 138
Implementing field validation 139
Case study example: Creating a required field 140

The Siebel Query Language 141
Syntax for pre and post-default values 145
Using the Siebel Query Language 146

Controlling business component behavior 147

Table of Contents

[v]

Case study example: Business component properties 147
Summary 149

Chapter 8: The Data Layer 151
Understanding tables, columns, and indexes 151

Understanding table types 152
Understanding columns 153

System columns 154
Understanding indexes 156
Understanding user keys 157
Creating table reports 158

Considerations for custom schema changes 159
Using preconfigured extension tables 161

Using 1:1 extension tables 161
Case study example: Creating a new field based on an existing 1:1 extension
table column 163

Using 1:M extension tables 164
Creating custom columns 165
Creating custom indexes 166
Creating custom tables 167

Case study example: Creating a custom standalone table 167
Applying schema changes to local and server databases 169

Using the Siebel Tools "Apply" feature 170
Verifying the application of local database changes 172
Using the synchronize schema definition process 174

Summary 177
Chapter 9: Business Objects and Links 179

Understanding business objects and links 179
Link object definitions 182

Creating a child business component on a 1:M extension table 184
Case study example: Creating a custom child business component 185
Case study example: Creating child business components on a
standalone table 191

Case study example: Creating links 192
Case study example: Configuring business objects 193
Summary 194

Chapter 10: Pick Lists 195
Understanding pick lists 195

Static pick lists 196
The pick list object type 197
Pick maps 198

Table of Contents

[vi]

Dynamic pick lists 198
Repository object types for pick lists 199

Case study example: Creating a new static pick list for an
existing field 200

Verifying object definitions created by the pick list wizard 202
Administering the list of values table 203
Case study example: Creating dynamic pick lists 206
Case study example: Reusing existing pick lists 207
Case study example: Creating pick applets 208
Case study example: Testing pick list configurations 210
Constrained and hierarchical pick lists 211

Exploring a constrained dynamic pick list 212
Exploring hierarchical static pick lists 213

Summary 214
Chapter 11: Multi Value Fields 215

Understanding multi value fields 215
The "Primary" concept 218
Repository object types behind multi value fields 218

Multi value link 219
Multi value field 220
Multi value group (MVG) and association list applets 220
Relationships between repository objects for multi value fields 220

Case study example: Creating multi value fields 222
Creating a new intersection table 222
Creating a new M:M link 223

Creating multi value fields using the MVG wizard 224
Case study example: Creating multi value group (MVG) and
association list applets 226

Creating association list applets 229
Creating MVG controls 229

Summary 230
Chapter 12: Configuring Access Control 231

Understanding Siebel access control 231
View properties for access control 233
Business component view modes 234
Repository object definitions for access control 236

Configuring view properties for Siebel access control 237
Case study example 237

Registering the new view 238
Defining business component view modes 238

Testing the access control configuration 239

Table of Contents

[vii]

Configuring additional object types for access control 240
Visibility settings for pick list object definitions 240
Visibility settings for link object definitions 241
Visibility settings for drilldown object definitions 241

Summary 242
Chapter 13: User Properties 243

Understanding user properties 243
Multi-instance user properties 246

Business component and field user properties 246
Named method user property 249
Case study example: Using the On Field Update Set user property 253
Field user properties 255

Applet, control, and list column user properties 256
Control user properties 257
List column user properties 257

View user properties 257
Summary 257

Chapter 14: Configuring Navigation 259
Understanding drilldown objects 259
Creating static drilldowns 262

Case study example: Static drilldown from list applet 263
Creating drilldown hyperlinks on form applets 263

Creating dynamic drilldowns 265
Case study example: Dynamic drilldown destinations for a list applet 265

Configuring the thread bar 267
Case study example: Configuring the thread bar 268

Configuring toggle applets 268
Manual applet toggle 268
Dynamic applet toggle 270

Summary 271
Chapter 15: Customizing the Look and Feel of
Siebel Applications 273

Understanding Siebel web templates 273
Web template definitions 276

Considerations for customizing the look and feel of
Siebel applications 277

Using an external text editor for web template customization 278
Customizing pre-built web templates 279

Creating custom web templates 282
Registering a custom web template file 283

Table of Contents

[viii]

Customizing web pages 284
Customizing style sheets 285
Configuring bitmaps and icon maps 287
Case study example: using an icon map 288
Case study example: replacing the application logo 290
Summary 292

Chapter 16: Menus and Buttons 293
Understanding the Siebel event framework 293

Event handling in Siebel applications 295
Controlling method invocation 297

Creating applet buttons 298
Case study example: Creating a custom applet button that
invokes a workflow process 298

Configuring command objects 301
Accelerators 302
Case study example: Creating a command with an accelerator 303

Case study example: Configuring application menu items 304
Case study example: Configuring toolbar buttons 305
Case study example: Configuring applet menu items 306
Summary 307

Chapter 17: Business Services 309
Understanding business services 309

Invoking business service methods 311
Preconfigured business services 314
Testing business services 317
Case study example: Invoking a business service method
from a runtime event 321

Runtime events 321
Summary 324

Chapter 18: Supporting Integration Interfaces 325
Understanding integration objects 325

Structure of integration objects 327
Internal and external integration objects 327
Integration component keys 329

Creating internal integration objects 330
Case study example: Creating an internal integration object 330

Deactivating unneeded integration component fields 332
Defining integration component keys 334
Testing integration objects 336

Table of Contents

[ix]

Advanced settings for integration objects 342
Summary 343

Chapter 19: Siebel Workflow 345
Understanding Siebel Workflow 345

Siebel Workflow step types 349
Workflow process properties 350

Designing and creating workflow processes 351
The workflow process editor 352
Case study example: Creating integration objects 354
Case study example: Creating a data map 355
Case study example: Creating a workflow process with
business service steps 358

Simulating and testing workflow processes 363
Publishing, activating, and managing workflow processes 366

Case study example: Publishing and activating a workflow process 368
Managing workflow processes 369
Viewing workflow process instance data 370

Invoking workflow processes 371
Case study example: Defining runtime events 372
Case study example: Decision steps and Siebel operations 374

Understanding decision point steps 377
Understanding Siebel Operation steps 378
Case study example: Replacing applets on the AHA Customer
Process Start View 380

Summary 381
Chapter 20: Advanced Siebel Workflow Topics 383

Exception handling in workflow processes 383
Using error exception connectors 384
Using stop steps 385
Case study example: Creating an error exception with a stop step 385
Using error processes 387

Subprocesses 388
Loops and iterations 389

Case study example: iterations on a child record set 389
Advanced workflow techniques 394

Workflow Utilities 395
SIA BC Utility Service 396
PRM ANI Utility Service 397
EAI XML Write to File 398
EAI File Transport 400

Table of Contents

[x]

Case study example: Using dot notation to access hierarchical data 400
Summary 402

Chapter 21: Siebel Task User Interface 403
Understanding the Siebel Task UI 403

Tasks and related repository objects 404
Case study example: Supporting a business process with Task UI 407

Creating task applets and task views 408
Preparation steps 408

New business component field: AHA always generate quote flag 409
New applet: AHA simple quote form applet 409
New applet: AHA simple order form applet 410
New transient business component: AHA partner query TBC 411
New task applet: AHA partner query task applet 411
New task view: AHA partner query task view 413
New task view: AHA create account task view 414
New task view: AHA create quote task view 415
New task view: AHA create order task view 415

Creating tasks 415
Creating the task flow layout 416

Configuring task view steps 417
Configuring business service steps 419
Configuring Siebel Operation steps 420
Configuring decision steps and branches 423

Creating and using task groups 425
Publishing, activating, and administering tasks 426
Testing and debugging tasks 427
Using applet messages 428
Summary 431

Chapter 22: Extending Siebel CRM Functionality with eScript 433
Introduction to Siebel scripting 434

Server and browser scripts 435
Application event handlers 438
Applet event handlers 438
Business component event handlers 439
Business service event handlers 440
The script editor 440
The script debugger 443
The script performance profiler 443
The Siebel eScript language 443

Variable declaration and initialization 445
Comments 446
Blocks and functions 446

Table of Contents

[xi]

Exception handling 448
Cleaning up 449
Siebel object interfaces 450

Application object methods 450
Applet object methods 452
Business component methods 452
Business object methods 456
Business service object methods 457
Property set object methods 457

When to use Siebel scripting 458
Creating a custom business service 460

Case study example: Retrieve person information with eScript 460
Creating a business service definition 460
Creating custom functions 461

Detailed discussion of the example code 463
Variable declarations 463
Executing a query 464
Verifying the query result 464
Reading values from business component fields 464
Handling exceptions 465
Cleaning up 466

Declaring business service methods and arguments 466
Testing and debugging scripts 467

Compiling the object definition 467
Setting breakpoints 468
Running the Siebel application in debug mode 468
Invoking the script code from the application 468
Correcting code errors during debugging 471

Summary 472
Chapter 23: Advanced Scripting Techniques 473

Browser scripting 473
Preparing Siebel Tools for browser scripting 474
Writing browser script 475

Browser script example 475
Monitoring changes on a specific field 477
Exception handling 477
Variable declaration 477
Performing date calculations 478
Changing control properties 478
Displaying a confirmation dialog to the end user 479
Interpreting the end user response 479
Displaying error messages 479

Table of Contents

[xii]

Continuing or canceling the flow of operation 480
Testing and debugging browser scripts 480
Extracting browser scripts using the genbscript utility 481

Using translatable messages 482
Invoking business service methods from server and browser script 484

Tracing 487
Considerations for script tracing 488

Performance profiling 488
Summary 490

Chapter 24: Deploying Configuration Changes
between Environments 491

Repository migration 491
Exporting and importing repository data 495

Exporting and importing selected repository objects 498
Exporting and importing administrative data 498
Application Deployment Manager (ADM) overview 501
Summary 503

Appendix A: Installing a Siebel CRM Self-Study Environment 505
Hardware requirements 505
Third-party software requirements 506
Downloading and extracting Siebel CRM software installers 506

Registering at Oracle E-Delivery 506
Understanding the license agreement 507
Downloading the installation archives 507
Extracting the installation archives 508
Downloading Oracle Siebel documentation 508
Extracting the Siebel installers 508
Adjusting the browser security settings 509

Installing Siebel CRM client software 510
Installing the Siebel Mobile Web Client 511
Installing the Siebel sample database 512
Installing Siebel Tools 513
Configuring Siebel Tools to connect to the sample database 514
Using the Demo Users Reference 514

Table of Contents

[xiii]

Appendix B: Importing Code Files 515
Importing Siebel Tools archive files (SIF) 515
Importing administrative data files 517

Appendix C: More Information 519
Getting trained 519
Finding information 520

The Siebel Bookshelf 520
Oracle forums 520
My Oracle Support 521
The Internet community 521

Index 523

Preface
Siebel CRM, Oracles' market-leading Customer Relationship Management software,
can be tailored to customers needs. In this book, the ambitious developer will learn
how to safely implement customer requirements in Siebel CRM using Siebel Tools,
Siebel's own integrated development environment.

This book is a complete practical guide to Siebel Tools and how it can be used to
implement custom requirements. The book teaches you to configure the Siebel CRM
user interface objects as well as the underlying business layer objects by using
real-life case study examples. In addition, you will learn to safely configure the
Siebel data model.

Understanding and using the Siebel Event Framework for automation is also a
key focus area of the book. You will gain a thorough and solid understanding of
integration objects to support EAI interfaces. Chapters on Siebel Workflow, Task UI,
and scripting prepare you for the most complex automation requirements.

This book uses a real-life case study to provide easy-to-follow examples for the
majority of chapters. The examples are radically practical and can be easily adapted
to similar situations in Siebel CRM implementation projects.

The book ensures that you know what you are doing and why you are doing it by
providing useful insight along with detailed practice instructions. The book contains
a multitude of explanatory tables, screenshots, and precise diagrams to illustrate
the topics.

When you have finished the book, you will feel prepared to participate in Siebel
CRM implementation projects. In addition you will be able to teach the old dog
some new tricks.

Preface

[2]

What this book covers
Chapter 1, Siebel Tools and the Siebel Repository, introduces you to the user interface of
Siebel Tools and the object definitions that form the Siebel Repository.

Chapter 2, Developer Tasks, lays the foundation for a solid understanding of common
tasks in the development cycle.

Chapter 3, Case Study Introduction, provides an introduction to All Hardware, a
fictitious company whose requirements serve as case study examples throughout the
remaining chapters.

Chapter 4, Symbolic Strings, discusses the concept of symbolic strings, the central
library of translatable texts that can be referenced from any object, that displays text
in the user interface.

Chapter 5, Creating and Configuring Applets, teaches you how to create and modify
form applets and list applets.

Chapter 6, Views and Screens, describes how to configure views and screens as well as
how to register views in a responsibility.

Chapter 7, Business Components and Fields, introduces you to the important concepts
of the Siebel business logic layer. You will learn how business components and their
fields lay the foundation of the logical data model and how to configure them.

Chapter 8, The Data Layer, enables you to identify configuration options for objects
that define the physical data model, such as tables, their columns and indexes.

Chapter 9, Business Objects and Links, completes the discussion of the business logic
layer by introducing the concept of business objects and links. As in all chapters
before, case study examples allow you to deepen your knowledge by providing a
hands-on experience.

Chapter 10, Pick Lists, enables you to create static and dynamic pick lists on business
component fields.

Chapter 11, Multi Value Fields, provides insight on how to configure multi value fields
and their counterparts in the Siebel user interface.

Chapter 12, Configuring Access Control, shows how to configure business components
to work within the Siebel Access Control framework in order to ensure data security.

Chapter 13, User Properties, introduces an important configuration option that
allows developers to define specialized application logic while staying within safe
declarative boundaries.

Preface

[3]

Chapter 14, Configuring Navigation, uses a case study example to explore the various
possibilities of providing static and dynamic drilldowns as well as toggle applets.

Chapter 15, Customizing the Look and Feel of Siebel Applications, enables you to modify
Siebel Web Templates and style sheets in a safe manner.

Chapter 16, Menus and Buttons, introduces the Siebel Event Framework and how to
use it to configure user interface elements such as menu items, applet buttons, and
toolbar buttons.

Chapter 17, Business Services, starts an exploration of the Siebel automation
capabilities by introducing the concept of business services. You will learn about
important preconfigured business services and how to invoke their methods.

Chapter 18, Supporting Integration Interfaces, brings information about integration
objects and how to use them to support EAI interfaces. The chapter also introduces
the EAI Siebel Adapter business service.

Chapter 19, Siebel Workflow, is the first of two chapters that explain the concepts and
configuration options of Siebel Workflow processes. The chapter explains in detail
how to create, simulate, and deploy workflow processes.

Chapter 20, Advanced Siebel Workflow Topics, explains how to use exception handling,
subprocesses, loops, and other advanced techniques within Siebel Workflow
processes.

Chapter 21, Siebel Task User Interface, introduces the Siebel Task UI and teaches
you how to configure, test, and deploy task flows to allow better business process
support for end users.

Chapter 22, Extending Siebel CRM Functionality with eScript, begins with an
introduction to the Siebel scripting framework, discusses important aspects of the
Siebel eScript language and shows you how to write a custom business service.

Chapter 23, Advanced Scripting Techniques, discusses topics such as browser scripting,
translatable messages, and tracing while providing real-life examples.

Chapter 24, Deploying Configuration Changes between Environments, introduces
the developer to techniques to migrate changes made to the Siebel Repository,
administrative data, and files from the development environment to other
environments.

Appendix A, Installing a Siebel CRM Self-Study Environment, guides you through the
necessary steps to downloading and installing Siebel CRM software for a self-study
environment.

Preface

[4]

Appendix B, Importing Code Files, provides brief step-by-step instructions on how to
import the code files provided with this book.

Appendix C, More Information, gives you details of where to find more information on
Oracle Siebel CRM.

What you need for this book
This book is for a technical audience. You will get most out of this book if you have a
solid information technology (IT) background and familiarity with operating systems
and relational databases. If you have experience with enterprise-class information
systems, consider this an additional benefit.

It is strongly recommendable to use additional resources on your Siebel learning
path. The course offerings of Oracle University (http://education.oracle.com)
are a perfect start.

Who this book is for
The book is written with the role of a developer in mind who has to ramp up
quickly on Siebel CRM, focusing on typical tasks such as implementing customer
requirements by means of creating or modifying object definitions in the Siebel
metadata repository using Siebel Tools.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "A Siebel Tools archive file (AHA Customer
Process Start View.sif) is available with this chapter's code files."

A block of code is set as follows:

function myTest(x : float ,y : float) : float
{
 return x*y;
}

Any command-line input or output is written as follows:

repimexp /A I /C "SEAW Local Db default instance"

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click the
OK button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for
this book
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Siebel Tools and the
Siebel Repository

One of the reasons why you decided to read this book might have been that you
will contribute to an Oracle Siebel CRM project as a developer. You might have
just started your new career or you are able to look back on years of professional
experience. You may have had the privilege of receiving decent training or tried to
master the steep learning path on your own. In either case, having a concise and
complete guidebook at hand is very helpful.

In this book you will find comprehensive descriptions and real-life examples
for configuration processes in Oracle's Siebel CRM. After a brief overview of the
integrated development environment (IDE), which goes by the name of Siebel
Tools, and the typical developer tasks, we are ready to explore all aspects of
configuration from the user interface (UI) to the Siebel business logic and
physical layer, workflow processes, and scripting.

A case study scenario will provide meaningful examples for your exercises.

In this chapter, we will discuss the following topics:

Siebel Tools User Interface
Siebel Repository Metadata

Data Layer Object Types
Business Layer Object Types
User Interface Layer Object Types
Integration Layer Object Types
Automation Layer Object Types
Other Object Types

•
•

°
°
°
°
°
°

Siebel Tools and the Siebel Repository

[8]

Siebel Tools user interface
Siebel Tools is a Microsoft Windows application that has been designed to view,
visualize, and modify the repository metadata of Siebel CRM. It is an integrated
development environment (IDE) that is used mainly by developers; however, at
certain project phases, business analysts and technical architects benefit from access
to the repository metadata as well.

We can launch Siebel Tools by clicking the respective item in the Windows start
menu. The name and location of the start menu item varies with the version of Siebel
CRM and the details entered during installation.

After providing username, password, and the data source in the login dialog box,
Siebel Tools launches its GUI. In this section, we will describe the user interface
elements of Siebel Tools.

The installation of Siebel Tools and other Siebel software products
is documented in the book titled Oracle Siebel CRM 8 Installation
and Management by the same author, and in the Siebel Installation
Guide for Microsoft Windows of the official Oracle Siebel Applications
Documentation Library (also known as Siebel Bookshelf). A quick guide
for installing a self-study environment containing the Siebel Developer
Web Client, the Siebel Sample Database, and Siebel Tools is also provided
in the appendix section at the end of this book.
The Siebel Installation Guide for version 8.1 can be found at the following
URL: http://download.oracle.com/docs/cd/E14004_01/
books/SiebInstWIN/booktitle.html.
If you have completed the installation of the self-study environment, you
can follow the examples in this book.
To log in to Siebel Tools and the Sample Database, click the Siebel Tools
shortcut in the Windows start menu, enter SADMIN as the username and
password, and select Sample in the Connect to drop-down box. Click OK
to log in.

The UI of Siebel Tools can be divided into the following elements:

Title bar
Menu bar
Toolbar
Docking windows
Editors
Status bar

•
•
•
•
•
•

Chapter 1

[9]

The following screenshot is an example screen of Siebel Tools to help us locate
these elements:

Title bar
The title bar displays the application name (Siebel Tools), followed by the name of
the currently open repository (Siebel Repository in the preceding example) and the
name of the currently open list view in the editors area in square brackets ([Screen
Menu Items]).

Siebel Tools and the Siebel Repository

[10]

Menu bar
The Siebel Tools application menu allows access to commonly used commands.
The following table describes some of the most important menu items. Many of the
commands are also available via keyboard shortcuts, toolbar buttons, or the context
menu, which can be opened by right-clicking an object in the editor area:

Menu item Keyboard shortcut Description
File | New Object… None Opens the New Object Wizards

dialog from where various wizards
can be launched.

File | Save Ctrl+S Saves changes made in graphical
editors to the database.

File | Export… None Opens the Export dialog which
allows exporting the current list
data to different file formats such as
CSV (comma separated values).

Edit | New Record Ctrl+N Creates a new record in list editors.
Edit | Copy Record Ctrl+B Copies the selected record including

child records.
Edit | Delete Record Ctrl+D Deletes the selected record and

associated child records.
Edit | Change Records… None Opens a dialog that allows setting

up to four fields of the selected
records to the same value. This
menu item is active when two or
more records in a list editor have
been selected using Shift+Click or
Ctrl+Click.

View | Windows | … None Allows opening various docking
windows such as the Properties
window.

View | Toolbars | … None Selection of toolbars to display.
View | Options… None Opens the Options dialog box,

which allows setting various
user-specific program options.

Tools | Compile Projects… F7 Opens the Object Compiler dialog,
which allows compiling entire
projects.

Tools | Check Out… F10 Opens the Check Out dialog.
Tools | Check In… Ctrl+F10 Opens the Check In dialog.

Chapter 1

[11]

Menu item Keyboard shortcut Description
Tools | Import from
Archive…

None Opens an archive (.sif) file and
launches the Import Wizard.

Tools | Compare Objects… None Allows visual comparison of
two object definitions in the same
repository, in another repository, or
in archive files.

Tools | Search Repository None Opens the Search Repository
dialog, which allows full text search
across the entire repository.

Tools | Utilities | Compare
SRFs…

None Allows comparison of two
.srf files.

Help | Contents None Opens the Siebel Tools
documentation.

Toolbar
Many of the most commonly used commands that have been described in the
preceding table are available as toolbar buttons. Toolbars can be enabled or disabled
by using the View | Toolbars sub menu. The following table describes the most
important toolbars:

Toolbar Description
Edit Contains the New, Save, Undo, and other buttons.
List Contains functions that are used in the list editor such as creating

new records, navigating, querying, and sorting.
History Contains the back and forward buttons and bookmark

functionality.
Debug Used during script debugging.
Simulator Used during testing and simulating of workflow processes.
Format Toolbar Contains buttons to control the format and layout of items in

the form applet grid editor and flowchart editors such as the
workflow process designer.

WF/Task Editor
Toolbar

This toolbar allows accessing the functions to revise, publish, and
activate workflow processes and tasks.

Configuration
Context

Allows changing the browser and application context for applet
editors. Note that this toolbar can be enabled only from the View
| Toolbars menu.

Siebel Tools and the Siebel Repository

[12]

Toolbars can be customized in a sense that a developer can choose which buttons
should be available in the toolbar. To do so, we can click the down arrow icon
at the right end of a toolbar and select Add or Remove Buttons as shown in the
following screenshot:

Docking windows
The various docking windows support the developer during tasks such as creating
or modifying applets, views, and workflow processes. The docking windows can
be opened via the View | Windows menu. The following table describes the most
important docking windows:

Docking window Description
Object Explorer This is the main docking window, which displays

the object types and their hierarchy in the Siebel
Repository.

Properties This window shows the properties of a selected item
in alphabetical order or by category.

Controls/Columns This window allows the developer to drag–and-
drop available controls to the form applet editor or
available list columns to the list applet editor.

Palettes Depending on the main editor window, this docking
window displays the available object types to drag-
and-drop into the editor canvas. For example, when
the workflow process editor is open, the window
contains the available step types for workflow
processes.

Applets This docking window allows the developer to drag-
and-drop different types of applets into the view
editor.

Chapter 1

[13]

Docking window Description
Multi Value Property Window Needed for the configuration of workflow processes,

tasks, and entity relationship diagrams. Because of
the "list" characteristic of this window, it appears
along the bottom of the application by default.

Bookmarks This window allows us to access bookmarks that can
be created by the developer to navigate to commonly
used object definitions more quickly.

Web Templates Window Opens the Web Template Explorer, which allows
displaying of the hierarchy of nested Siebel Web
Templates and viewing of the content of the web
template files (.swt).

Debug Windows Available via the View | Debug Windows menu,
these windows support the debugging processes of
scripts and workflow processes.

The docking windows all share the characteristic of being arrangeable on the screen
in free floating mode or docked mode. To create a free floating window, we have
to right-click the title bar of a docked window and select Floating. The window can
now be moved and resized across the available screen area.

To dock a floating window, we grab the window's title bar and drag the window
to the desired dock location at the screen border. Once the mouse cursor reaches or
crosses a dock location, a gray frame indicates the area and position that the window
will occupy when the mouse button is released.

Dragging the title bar of one docked window exactly on top of the title bar of another
docking window enables stacked windows. Tabs at the bottom of the window frame
allow the selection of stacked windows. This mode is convenient when screen space
is limited. The next screenshot shows an example of four stacked docking windows:

Siebel Tools and the Siebel Repository

[14]

Using the pin icon, we can enable or disable the auto-hide functionality. In hidden
mode, a docking window, or a stack of docked windows, is reduced to a tab bar at
the border of the screen. Holding the mouse cursor over the tabs in this bar pulls out
the window.

Editors
The editor area, or workspace, is a frame where the list editor and all other graphical
editors and viewers appear. The following table describes the most important editors
and viewers:

Editor/viewer Description
Object List Editor This is the main window that displays the list of

object definitions for an object type selected in the
Object Explorer window.

Web Applet Editor Typically opened from the context menu on the
Applet list via the Edit Web Layout command, this is
the main graphical editor for form and list applets.

View Editor The graphical editor for views is typically opened
via the Edit Web Layout command of the View list's
context menu.

Screen View Sequence Editor The graphical editor, invoked from the screen list's
context menu, allows developers to define the
hierarchical structure of screens.

Menu Editor Supports the graphical design of applet menus.
Script Editors The script editors allow developers to write and

debug scripts. The script editors are described in
detail in a separate chapter.

Canvas/Flowchart Editors Three different object types use the canvas editor for
graphical design: Workflow Process, Task, and Entity
Relationship Diagram.

View Web Hierarchy Can be invoked on user interface objects such as
applets, views, or screens, and displays the selected
object in its hierarchical context.

View Details This viewer can be invoked from business layer
objects such as business components and business
objects, and displays the selected object and its
relationship to other objects.

View Relationships Displays the relationships of the selected object
(table or business component) to other objects
of the same type.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[15]

The editor area supports arranging the windows in full screen mode as well as in
cascaded or tiled window mode. The respective commands can be found in the
Windows menu. In the full screen mode, easily set by double-clicking the title bar
of an editor window, the developer can switch between the editor windows using a
tab bar.

Status bar
The status bar at the bottom of the application window displays the following
information:

Record count for the list editor
The current working language
Status messages (for example, during compilation)

Navigating in Siebel Tools
The typical navigation scenario in Siebel Tools is to use the Object Explorer docking
window to select the desired object type and then use the Object List Editor window
to query for an existing object definition. The following example procedure shows
how to select the Contact Form Applet and display a list of its controls:

1. In the Object Explorer, select the Applet type.
2. In the Object List Editor, press Ctrl+Q to initiate a new query.
3. In the Name column, enter Contact Form Applet (paying attention to case

sensitivity).
4. Press the Enter key to execute the query.
5. In the Object Explorer, click the plus (+) sign to the left of the applet object

type to expand the hierarchy and display the child object types of an applet.
6. Click the Control object type.
7. You can now use the Object List Editor to review the controls of the Contact

Form Applet.

Siebel Repository metadata
The Siebel Repository is a key component of the Siebel architecture. The data stored
in a repository is typically named metadata because it describes the architecture and
logical behavior of a program in an abstract ("meta") manner. In the next section, we
will discuss the content of the Siebel Repository in detail.

•
•
•

Siebel Tools and the Siebel Repository

[16]

Developers and analysts use Siebel Tools to access and modify data in the repository
tables of the Siebel database. Each modification must be made available to the
Siebel executable by compiling a new version of the Siebel Repository File (SRF).
The following diagram depicts the relationships between Siebel Tools, the Siebel
Repository File, and the Siebel executable:

We observe that the Siebel executable, which is responsible for rendering the
application to the end user in the browser, accesses a different set of tables than
Siebel Tools.

Did you know?
There is no technical boundary between user tables and repository tables.
There are circumstances where both applications (Siebel Tools and the
application used by the end users) access the same tables. An example for
this behavior can be found in the administration of List of Values (LOV)
data for drop-down in pick lists. LOV data can be administered in Siebel
Tools as well as the Siebel Web Client.

As indicated, the Siebel Repository can be described as metadata stored in a set of
tables in a relational database. When modern programming patterns arose in the
second half of the last century, developers and architects found that it is highly
beneficial to separate the program logic into specialized layers.

Chapter 1

[17]

The Siebel Repository metadata is organized in the following layers:

Data layer
Business layer
Presentation layer
Integration layer
Automation layer

The data layer
The majority of enterprise software applications use relational database
management systems (RDBMS) for data storage. Siebel CRM is no exception. The
data layer of the Siebel Repository defines the physical storage of data used by all
Siebel applications. The major object types in the data layer are:

Tables and columns
Interface tables
Indexes

Tables and columns
The Siebel Repository holds the definitions of all tables that are present in the
relational database. Tables and their columns are the fundamental building blocks
of the physical data model or schema that is used by all Siebel applications.

The following list conveys some interesting facts about Siebel tables:

The Siebel Industry Applications (SIA) schema contains more than
3000 tables.
Each table has a set of system columns that hold data like the timestamp
of the last update or the total number of modifications for each individual
record.
The ROW_ID system column is automatically populated with a unique
identifier. This identifier is unique across the enterprise, which means that
even if there are thousands of mobile users having their own local database,
each record will have a ROW_ID value that will never be used for any
other record.

•
•
•
•
•

•
•
•

•

•

•

Siebel Tools and the Siebel Repository

[18]

Even if the ROW_ID column is marked as the primary key in the repository,
this information is not manifest in the RDBMS. The same is true for all
foreign key definitions. The referential integrity of primary key-foreign
key relationships is maintained by the Siebel application logic exclusively.
The preconfigured tables cannot be modified by customers. Developers
at customer projects are only allowed to add columns or tables to
the repository.

Interface tables
In order to facilitate mass data exchange at the database level, interface tables are
part of the Siebel database schema. When integration architects want to import data
using the Enterprise Integration Manager (EIM) module, they have to populate the
interface tables and then invoke the EIM server component.

Each interface table maps to one or more data tables. During import, EIM reads data
from the interface tables and populates the data tables. When exporting data, EIM
reads the data tables and writes to the interface tables. Other capabilities of EIM
include updating, merging, and deleting operations against the data tables.

Did you know?
Direct manipulation of data in tables other than interface tables by
means of SQL statements is not permitted because it can lead to severe
data integrity problems and it can even render the Siebel application
unavailable.

Indexes
For each table, the Siebel Repository defines a variety of indexes in order to improve
query and sorting performance. Indexes are preconfigured to support various
column and sorting combinations, and can be added or deactivated depending on
the customer requirements.

Object type relationships in the Siebel data layer
Objects in the Siebel Repository reference each other. For example, an index
definition references columns of the table it is defined for. Another example is an
interface table that references one or more data tables. The following diagram depicts
the object types in the data layer of the Siebel Repository and their relationships:

•

•

Chapter 1

[19]

We can observe that a table is a set of columns. For each table, one or more indexes
exist that reference one or more columns in the table. A table is mapped by one or
more EIM interface tables, which themselves map to one or more tables.

In Chapter 8, The Data Layer, we will explore the object types and the customization
options of the data layer in greater detail.

The business layer
The complexity of today's typical business requirements shapes the Siebel business
layer. This layer serves as a level of abstraction from the data layer, by mapping
real-world entities, their attributes, business logic, and relationships to reusable
metadata object definitions.

The following is a list of the major building blocks of the Siebel business layer:

Business components, joins, and fields
Links
Business objects

Business components, joins, and fields
Business components, their fields, and other child object types such as joins define
the central application logic for all Siebel applications. We can imagine a business
component as a technical implementation of a real life entity. For example, a service
request or trouble ticket raised by a customer must be stored in Siebel CRM in a way
that it can be easily assigned to internal employees to handle the request. In addition,
the service request must be related to a customer account and to the product in
question.

•
•
•

Siebel Tools and the Siebel Repository

[20]

The Service Request business component implements this logic. The Siebel
executable uses the information in the business component object definitions, in
order to generate the SQL statements against the relational database to query and
modify the records in the respective tables.

Therefore, business components reference objects of the data layer, namely tables
and columns. Because the data accessed by a single business component is stored
in more than one table (the physical schema of Siebel is highly normalized), the
business component definition includes joins that reference other tables.

We can use Siebel Tools to visualize the relationships between business components
and tables by right-clicking on a business component definition and selecting View
Details. The resulting visualization, for the Service Request business component for
example, is displayed in the following screenshot:

Chapter 1

[21]

The View Details window in Siebel Tools allows inspecting the mapping from
each field in a business component to a column in a table. The screenshot shows
how the Asset Number field in the Service Request business component references
the ASSET_NUM column in the joined table named S_ASSET. This relationship is
graphically indicated by arrows that point from the field to the join and from the
join to the column.

Links
In the real world, entities are related to each other. Business analysts use entity
relationship diagrams (ERDs) to depict the relationships between entities. The
following diagram represents an example of an ERD:

The example defines the relationships between a customer account, its related
contact persons, and service requests. While the same contact person can be
associated with many other accounts (a many-to-many or M:M relationship), only
one account at a time can be associated with a service request (a one-to-many or
1:M relationship).

We have learned above that entities are implemented as business components
in the Siebel Repository. The relationship between two business components is
implemented as a link. Once business components are connected by a link, the
application can easily retrieve a parent record and all associated child records from
the database.

Siebel Tools and the Siebel Repository

[22]

Business objects
A business object defines a collection of business components and the links that are
used to relate the business components to each other. As a result, a parent—child
hierarchy of business components is created. Siebel Tools allows visualizing the
hierarchy of business components in a business object, by right-clicking on a
business object and selecting View Details. An example result is depicted in the
next screenshot:

The example shows the parent—child relationships between the FS Invoice business
component and its child business components. The link objects that connect the
business components are visible in the screenshot as well.

Relationships of business layer and data layer
objects
Business components, their fields and joins, as well as business objects and links have
close relationships to other object types in the Siebel Repository metadata model. For
example, business components and their fields reference tables and columns in the
data layer. The following diagram depicts the major object types in the business layer
and data layer along with their relationships:

Chapter 1

[23]

The relationships can be described as follows:

A business component has multiple fields
A business component references one base table
Multiple joins can be associated with the business component and reference
one table each
Fields in a business component reference columns in the base or joined tables
Links refer to one parent and one child business component
Business objects are lists of business components and the links that are used
to tie them together

We will learn how to modify and create object definitions in the business layer in
various chapters across this book.

The presentation layer
Also named the logical user interface, the presentation layer defines how data is
presented to the end user. We can describe the following major object types in the
presentation layer:

Applets and controls
Views
Screens
Applications
Menus and toolbars

•
•
•

•
•
•

•
•
•
•
•

Siebel Tools and the Siebel Repository

[24]

Applets and controls
Applets are the major building blocks of the graphical user interface of a Siebel CRM
application. Siebel CRM applications use the following applet types:

List: Displaying multiple data rows at once
Form: Displaying one record at a time
Tree: Displaying data hierarchically
Chart: Visualizing data in various chart formats

The data itself is displayed to and modified by the end user by means of controls.
Text boxes, check boxes, radio groups, along with buttons and lists, are examples
for different types of controls.

Developers use graphical editors to define the presentation layer objects. We can
access the applet editor, for example, by right-clicking an applet definition in the
Object List Editor and selecting Edit Web Layout.

Applets reference a single business component from which they receive data and to
which they submit the method invocations when end users interact with the applet.
For example, when a user clicks the Delete button on an applet, the respective
method is invoked in the business component referenced by the applet. The
application engine then generates the necessary SQL statement to delete the
record from the database.

Following a strict programming pattern, applets themselves do not define any
business logic. Applets and their controls only define which fields and methods
of a business component are exposed to the end users.

Did you know?
In Siebel web applications, the look and feel—the font style, background
colors, and so forth—is defined by cascading stylesheets that are situated
outside of the repository. This is why the presentation layer is also called
logical UI, whereas the files necessary to define the look and feel in the
browser are part of the physical UI.

Views
We can describe a Siebel View as a web page that defines the arrangement of one
or more applets on a layout template. The following screenshot shows the Account
Summary View with one form applet on top and four list applets below in the Siebel
web client:

•
•
•
•

Chapter 1

[25]

The list applets are arranged side by side for maximum visibility of the data that the
end user needs for the business process. Each view references a single business object
so that the application engine can use the link information to retrieve the correct
child records for the selected parent record.

Screens
A screen is a collection of views that serve a similar purpose such as working with
service request data or administering Siebel servers. In addition, a screen also defines
the hierarchical order of the views and the labels that appear on clickable items such
as tabs or links.

Applications
Following a rather simplistic but elegant design pattern, a Siebel application is not
much more than a set of screens. In addition, an application object defines menus
and web page templates to be used for rendering the user interface.

Siebel Tools and the Siebel Repository

[26]

Menus and toolbars
When end users work with the data provided by the applets, they often have to
invoke methods offered by the Siebel framework. Clicking the Site Map button
to navigate to the site map, or selecting New Quote from the context menu of the
Account List Applet, are just two examples how the end users utilize user interface
components such as toolbar buttons or menu items.

The Siebel application architecture allows developers to place buttons and menu
items in the following locations:

Application menu in the top banner
Application toolbar
Applet headers
Applet menus

Each of these buttons or menu items invokes a method or command, which is
handled either by Siebel's out of the box functionality, or by workflow processes or
script code written by the developer. This provides the automation functionality
required by the end users. Prominent commands such as New Record are often
made accessible more than once such as a menu item, a keyboard shortcut, and an
applet button at the same time.

Relationships of presentation layer and business
layer objects
Views, applets, and controls reference objects in the business layer. The references and
the relationships of objects within the presentation layer can be visualized as follows:

•
•
•
•

Chapter 1

[27]

We can infer the following from the diagram:

A Siebel application is a collection of screens
An application defines the main menu and toolbars to be displayed
Screens can be reused in other applications
A screen is a collection of views
A view is a set of reusable applets
A view references one business object to establish the data context
An applet defines a set of controls such as text boxes or buttons
Each applet references a single business component
There can be multiple applets referencing the same business component
Each control in an applet references a field in the business component
referred to by the applet

Chapter 5 and Chapter 6 of this book will discuss how to modify and create
presentation layer object definitions.

The integration layer
Modern enterprise applications are never installed and used standalone. On the
contrary, they are very often part of complex IT infrastructures with multiple
integration touch points. In order to provide a standardized interface definition to
access Siebel data, the Siebel Repository provides the ability to define Integration
Objects. In order to suit the different integration requirements such as mapping
between Siebel and external schemas, integration objects can be defined as "internal"
or "external".

Internal integration objects
We can start by imagining a scenario where an integration architect has to define a
data interface between Siebel CRM and an external order management application.
The architect's duties include determining the exact set of fields to be exchanged
between the applications.

When the architect analyzes the definition of the Order Entry - Orders business
component, which implements the entity of an order header, and the various child
objects such as line items, he/she finds that there are hundreds of fields defined in
Siebel CRM to store order data. The external system may either not be capable of
storing all this information or simply not need all these fields.

•
•
•
•
•
•
•
•
•
•

Siebel Tools and the Siebel Repository

[28]

This is why the Siebel Repository includes integration objects. Integration architects can
create integration objects that reference business objects, their components and fields,
and define a subset of the information made available by the business layer objects.

In other words, a Siebel integration object is a schema definition for data exchange
via enterprise application integration (EAI) interfaces.

Did you know?
Whenever the Oracle Siebel CRM design team creates integration
touch points with other applications such as Oracle BI Publisher
for reporting, they choose integration objects as the mechanism to
define the schema of data to be exchanged.

Internal integration objects define the interfaces for the Siebel business layer objects.
They have a similar hierarchy as business objects, containing integration components
and integration component fields. The following diagram depicts the object types of
the integration layer and their relationship to the business layer's object types:

The following list summarizes the concept of internal integration objects:

An internal integration object references a single business object
The integration component definitions within an internal integration object
reference business components within the business object
Integration components define a list of integration component fields, each of
which references a field in the business component referred to by its parent

•
•

•

Chapter 1

[29]

External integration objects
The Siebel CRM integration architecture provides data mapping functionality in
order to assist Siebel developers in creating rich interface definitions. A developer
who wishes to map Siebel data to external data needs to import the external schema
definition from a file (typically an XML schema definition file, or .xsd file) in
Siebel Tools.

The import of an external schema produces so-called external integration objects,
which are subsequently used by the Siebel data transformation engine to produce
data sets that match the schema definition of the external systems.

In Chapter 18, Supporting Integration Interfaces, we will learn how to create integration
object definitions to support EAI interfaces.

The automation layer
Enterprise software such as Siebel CRM must include features to automate business
logic and provide business process guidance for end users. The automation layer of
the Siebel Repository includes the following object types that allow developers to
fulfill automation requirements:

Business services
Workflow processes
Tasks
Commands

Business services
Almost the entire business logic that can be found in a Siebel CRM application is
the result of the work of business services. We can imagine a business service as
encapsulated program code, which is designed to accomplish a certain task.

The Siebel Repository comes replete with hundreds of preconfigured business
services. The following list gives an impression of business-service-based logic
in Siebel CRM:

Pricing logic in Siebel Order Management
Customer self service and registration
Asset and agreement management
Import and export of XML data
Importing external schema definitions in Siebel Tools
Integration with queuing systems such as IBM Websphere MQ

•
•
•
•

•
•
•
•
•
•

Siebel Tools and the Siebel Repository

[30]

Business services can be exposed as web services to provide the foundation for
service-oriented architectures (SOA). They can be written in many programming
languages, of which Siebel eScript is the most popular at customer projects.
Developers at Oracle write C++ classes, which is another way to define functionality
in Siebel business services. In addition, the Siebel application framework supports
Java and Visual Basic as programming languages for business services.

Workflow processes
The Siebel Workflow module is known for its capability to orchestrate business
services by defining the sequence of their invocation. Siebel Workflow is in fact
4GL—a fourth generation programming language that allows developers to
implement complex business logic without the need to write program code.

Siebel Industry Applications (SIA) 8.1.1 are shipped with a repository that contains
over 1300 workflow process definitions that drive the business logic of complex
application modules such as order management, marketing, pricing, and user self
registration. The following screenshot shows an example workflow process in the
Workflow Process Designer in Siebel Tools:

Chapter 1

[31]

Siebel developers use the process designer to create and modify workflow processes.
We can observe that a workflow is a series of steps, decision branches, and exception
handlers—very similar to a written program.

We can access the Workflow Process Designer in Siebel Tools by right-clicking a
workflow process object definition and selecting Edit Workflow Process.

Tasks
End users must be trained to perform various business processes and tasks in Siebel
CRM. But some business processes are rather complex and also rarely executed,
making it difficult to flawlessly perform a business process.

End users might require guidance for complex business processes in order to carry
out all steps correctly and enter high quality data. The Siebel Task UI provides the
technological foundation for creating task-based user interfaces and the technical
flow behind them.

Similar to workflow processes, tasks define a sequence of steps with the main
difference to workflow that user navigation is at the core of the task. So-called task
views can be created to provide the input controls and data that a user needs at a
certain step in the business process.

Developers use the Task Editor to create and modify task definitions. A task
definition contains one or more task view steps, which implement the user
interface for the given step of the business process.

Commands
Commands are reusable object definitions and act as invocation mechanisms for
business services, workflows, or built-in methods of the Siebel application. They are
typically referenced by menu items and toolbar buttons, and define the foundation
for the invocation of Siebel functionality by the end user.

We will learn how to create business services, workflow processes, tasks, and
commands in later chapters of this book.

Siebel Tools and the Siebel Repository

[32]

The logical architecture of Siebel applications
We have now discussed the major object types of the Siebel Repository. Together
with other object types and features, they form the logical application architecture.
We can combine the information about the layers of the Siebel Repository in a logical
architecture map as shown in the following diagram:

We can summarize the information in the diagram as follows:

The data layer (hexagon shaped objects) of the Siebel Repository defines the
physical storage of data such as tables, columns, and indexes
The business layer objects (rectangle shaped objects), namely the business
components, reference the data layer and serve as a level of abstraction to
allow the modeling of real-world entities into metadata
The presentation layer (trapezoid shaped boxes) includes all object types
that are used to present data and functionality provided by the business layer
to end users
The integration layer (bookmark shaped objects) provides the foundation for
data exchange with external systems

•

•

•

•

Chapter 1

[33]

The automation layer (rhombus shaped objects) and its business services
enable the automation functionality of Siebel CRM
External systems can be integrated with Siebel CRM by exposing objects of
the automation layer or by using interface tables

Other object types
The following table serves as a quick reference, in alphabetical order, for other
important object types in the Siebel Repository:

Object type Description
Bitmap Category Collections of bitmaps used for toolbar buttons or

icons.
Content Object Used in Siebel Content Management and Application

Deployment Manager to represent data objects.
Entity Relationship Diagram Allows drawing of entity relationship diagrams and

links them to business layer object definitions such as
business components, links, and fields.

Icon Map Collections of bitmaps related to a specific value.
Allows displaying of a graphic instead of text data in
the user interface.

Message Category Collection of messages to display to the end user.
Pick List This object type defines the list of values (LOV) for

drop-down lists and single value selection fields.
Project A container for objects. Each object definition in the

Siebel Repository must belong to one project.
Symbolic String Represents a text string and its translations to

multiple languages. Can be referenced from every
object that displays static text in the user interface.

Type Defines the object types and their attributes
(properties) in the Siebel Repository.

Web Page Relatively static user interface elements such as the
login page.

Web Template Pointer to physical .swt files in the WEBTEMPL folder
of a Siebel application.

Workflow Policy and
assignment-related object types

Used to define objects related to workflow policies
and assignment manager.

•

•

Siebel Tools and the Siebel Repository

[34]

Summary
Siebel Tools allows us to inspect, create, and modify various object types in the
Siebel Repository. The logical Siebel architecture follows a strict principle of
separated layers, thus providing the foundation for a stable yet extensible
application framework.

The Siebel Repository metadata defines anything from the menu that an application
displays to the tables and columns where the data is stored physically.

The business layer consisting of business objects, business components, and links
(to mention the most important members) is the main abstraction layer and entry
point for data access for end users and external systems alike.

In the next chapter, we will discuss the typical tasks for a Siebel developer.

Developer Tasks
In this chapter, we will describe the processes and tasks that a developer typically
has to carry out during the configuration process. In addition, we will try to establish
a thoughtful and well structured approach of customization with the upgrade in
mind. The following topics will be discussed here:

Initializing the local database
Getting object definitions from the server database
Projects and objects
Siebel Tools options
The development process

Checking out
Creating or modifying object definitions
Validating object definitions
Compiling object definitions
Testing and debugging
Checking in

Local locking and prototyping
Archiving object definitions
Importing archived object definitions
Comparing object definitions
Searching the Siebel Repository
Integrating external source control systems
Automating developer tasks using command line options
Keeping the upgrade in mind

•
•
•
•
•

°
°
°
°
°
°

•
•
•
•
•
•
•
•

Developer Tasks

[36]

This chapter's intention is to give a brief overview of the functionalities of Siebel
Tools. Most of these features will be discussed in a real-life context later in this book.

Initializing the local database
The Siebel development environment is a separate installation of a Siebel Enterprise
dedicated for the sole purpose of supporting development activities. Instead of
making changes to the Siebel Repository in the server database, developers use local
databases and local Siebel client installations on their workstations. This provides
a secure environment for testing the changes before publishing them to the server
environment and making them accessible for other developers.

The following diagram depicts the building blocks of a Siebel development
environment:

The following facts can be derived from the preceding diagram:

Siebel Tools: installed on the developer workstation—connects to the local
database
During the Check Out or Check In process: described in more detail later in
this chapter—Siebel Tools connects to the server database

•

•

Chapter 2

[37]

The developer uses the Siebel Tools compiler to create a new version of the
Siebel Repository File (SRF)
The Siebel Mobile Web Client is used to test the changes against the local
database

It is possible to use the local Siebel client installation to connect to a server
database for testing purposes. The client is then named Developer Web
Client because a network connection is necessary for this scenario.

The local database is a Sybase.dbf file, which is created using the Siebel Remote
module which has been designed to support the mobile end user community. The
process of registering developers as mobile clients and extracting the database
schema and data for the local databases is described in detail in the book Oracle
Siebel CRM 8 Installation and Management of the same author and in the Siebel Remote and
Replication Manager Administration Guide in the Siebel bookshelf (http://download.
oracle.com/docs/cd/E14004_01/books/RRAdm/booktitle.html).

We have to carry out the following steps in order to download and initialize the
local database:

Establish network connectivity.
Verify settings in the client configuration files.
Download and initialize the local database.

Establishing network connectivity
For the initial download of the files that are needed to initialize the local database,
the developer workstation must be able to establish a TCP/IP connection to the
Siebel Remote server host machine.

Verifying settings in the client configuration
files
The following parameters in the [Local] section of the tools.cfg file, found in the
bin subdirectory of the Siebel Tools installation folder, must be set as described in
the following table. The same settings must also be applied to all client configuration
files (.cfg) such as the uagent.cfg file for Siebel Call Center—which will be used
for testing with the Mobile Web Client.

•

•

1.
2.
3.

Developer Tasks

[38]

Parameter Description Example Value
ConnectString Defines the absolute

path to the local Sybase
database and includes
parameters that are
passed to the Sybase
database engine.

D:\SIA81\TOOLS\local\
sse_data.dbf -q -m -x
NONE -gp 4096 -c15p -
ch25p

DockConnString Defines the physical
hostname or IP address
of the Siebel Remote
server.

devsrvr1

LocalDbODBCDataSource
([Siebel] section)

Name of the ODBC data
source to access the local
database.

SSD Local Db default
instance

Downloading and initializing the local database
We can now launch Siebel Tools from the Windows start menu and log on to the
local data source using the developer username and password provided by the
administration team. The message that the local Siebel database was not found must
be acknowledged with the Yes button.

The Siebel Remote Parameter dialog box is displayed next, prompting for the mobile
client name, username, and the future password for the local database. Client name
and username are usually the same. We should select a secure password (password
policies may have been set by the administrator). Once we click the Continue button,
the Siebel Remote software downloads the compressed schema and data files to the
local workstation.

Once the files are downloaded, the Siebel Upgrade Wizard is invoked automatically.
The wizard uses the downloaded files to create and populate the new local Sybase
database in the location specified in the ConnectString parameter of the tools.
cfg file. The following screenshot shows the Siebel Upgrade Wizard displaying its
progress during the local database initialization:

Chapter 2

[39]

Once the Siebel Upgrade Wizard has completed all steps, Siebel Tools launches
automatically.

Getting object definitions from the server
database
Administrators can set the Extract all Repository Tables parameter to True
before submitting the Database Extract job on the Siebel Server. When this is the case,
the local database is already populated with repository data during the initialization
process and developers can start working immediately.

If the parameter is not set to true, the repository tables in the local databases
are empty and the developer has to use the Siebel Tools Get functionality to
populate them.

To copy — or get—the full set of repository data from the server database to our local
database, we execute the following steps:

1. If necessary, log on to Siebel Tools to the local database.
2. In the Tools menu, select Check Out….
3. The Check Out dialog is displayed. If the repository tables in the local

database are empty, all projects are selected by default.
4. Select the All Projects option to ensure that all projects are selected.

Developer Tasks

[40]

5. Click the Get button.
6. Wait for the process to finish (approximately an hour, depending on network

bandwidth and workstation performance).

In case of errors, we should check the network connectivity to the server database
and the settings of the local database client software, such as Oracle Database Client,
before we retry the procedure.

Once the process is finished, we can for example click the Application object type in
the Object Explorer window and verify that a list of applications is displayed in the
Object List Editor.

The Get process can be repeated for individual projects at any time. The typical
scenario is that a developer wants to pick up the latest changes checked in to the
server database by fellow developers before she or he begins a new workday.

Projects and objects
Each object definition in the Siebel Repository must belong to exactly one project. A
project can be considered a container for an arbitrary selection of object definitions.
The Siebel CRM engineering team at Oracle defines the initial set of projects.
Developers at customer sites can either choose to keep the order defined by Oracle
or decide to change the project assignment for selected object definitions without
affecting Siebel functionality.

In addition, we can create new projects if needed. The following procedure is an
example of how to create a new project definition in the local developer database:

1. In the Object Explorer window, select the Project type.
2. In the Object List Editor, use Ctrl+N to create a new record.
3. Enter a meaningful name for the project, such as AHA Prototypes (see the

following for an explanation of the prefix).
4. Check the flag in the Locked column to lock the project in the local database

(making the project writeable).
5. Step off the record (using the down arrow key) to save it.

When creating new object definitions in the Siebel Repository, we should
adhere to a consistent naming convention. Using a company-specific
name prefix (AHA in the preceding example) is mandatory to avoid
confusion with object definitions created by Oracle engineering.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[41]

As indicated previously, projects must have the Locked flag checked in the local
database to be able to add object definitions and check them in later. Once the project
is checked in to the server database, we can decide whether the project should allow
single object locking (the default) or not.

Single object locking allows developers to check out and lock individual object
definitions rather than an entire project thus reducing the amount of data to be
copied between the developer workstation and the server database. In addition, the
probability that a developer locks an object definition that other developers would
like to work on decreases.

In the following sections, we will discuss the concepts of project and object locking in
greater detail.

Siebel Tools Options
Before we start developing, we should take a look at the most important program
options for Siebel Tools. We can launch the Development Tools Options dialog
by selecting the Options… item in the View menu. The dialog has several tabs as
depicted in the following screenshot:

Developer Tasks

[42]

The following table describes the tabs in the Development Tools Options dialog and
the settings that can be made.

Tab Description
General Allows enabling or disabling confirmation dialogs such as

prompting to save before compiling. The date and time set in
the Changed date section is used to mark all records with the
Changed flag when they have been updated after this point in
time. The General tab also includes options for the Workflow
Process and Task editors.

Language Settings The language set in this tab is used for string display,
compilation and check in or check out.

Check In/Out In this tab, integration with external source control systems can
be enabled. In addition, the ODBC data sources for the local and
server database can be set.

List Views Controls the font size, spacing, and visual styles for the Object
List Editor.

Scripting Settings for the script engine. Discussed in more detail in a later
chapter.

Web Template Editor Defines the path to the working folder for Siebel web templates
as well as the path to an external text editor executable, which
can be launched from within Siebel Tools to edit a Siebel web
template file.

Debug Entries in this tab define the command line to invoke the Siebel
Mobile or Developer Web Client when the Script Debugger or
Workflow Process Simulator is launched.

Visualization Style settings for the various viewers such as the View Details
window.

Object Explorer Allows defining which object types (and child types) appear in
the Object Explorer window.

Database Specialized settings to accommodate IBM DB2 server databases.

The development process
Developers are typically given clear instructions about the required modifications
from the solution architects and business analysts. For example, a new field should
be added to the Contact business component and the Contact Form Applet should
expose the new field as a new textbox control.

Chapter 2

[43]

When implementing the preceding example and during all other development
cycles, the developer has to adhere to a process that can be depicted as follows:

In the following sections, we will refer to the preceding example while we discuss
each of the process steps in detail.

Checking out
When a developer, connected to the local database in Siebel Tools, wants to establish
write access to an object, she or he has to use the Check Out functionality of Siebel
Tools. There are two choices: Checking out single object definitions or entire projects.

Since Siebel CRM version 8.0, the Siebel Repository is preconfigured to support
single object locking. In technical terms, the majority of projects have the Allow
Object Locking flag set to true. This flag can only be changed to false when we log in
to Siebel Tools as SADMIN to the Server data source. We can then right-click a project
and select Toggle Allows Object Locking to switch the flag between its true and
false values.

When a project has the Allow Object Locking flag set to true, we can only check out
individual object definitions from that project. If the flag is set to false, we can only
check out the entire project. The development team should decide early which check
out technique to use in order to avoid confusion.

During the Check Out process, the selected objects are copied from the server
database to the local database. All local data is overwritten during this process.
This is similar to the Get functionality we have discussed earlier in this chapter. The
difference between Get and Check Out is that after the data is copied during a Check
Out, the Locked flag is set to true in both server and local databases on either the
individual object or the entire project. Here are the outcomes:

Setting the Locked flag to true in the server database makes the object or
project unavailable for check out by other developers
Setting the Locked flag to true in a local database enables write access to the
object or all objects in the project

In summary, the Check Out process ensures that an individual developer has
exclusive write access to the selected objects.

•

•

Developer Tasks

[44]

The following procedure is intended to demonstrate the process of disallowing object
locking for a given project. Following our simple preceding example, we disallow
object locking for the Contact project in order to be able to check out the entire
project. We can identify the project to check out by inspecting the Project property
of any object definition:

1. Log on to Siebel Tools, connecting to the Server database as SADMIN.

In a real-life environment, you may not have access to
the SADMIN password and may need assistance from an
administrator to execute the following steps.

2. In the Object Explorer window, select the Project object type.
3. Query for the Contact project in the Object List Editor.
4. Right-click the Contact project and select Toggle Allows Object Locking in

the context menu.
5. Use the Exit command in the File menu to close the server session of

Siebel Tools.

The preceding procedure is only needed when we wish to toggle the Allows Object
Locking flag for a project.

The next procedure describes the process of checking out a project using the Contact
project (which contains the Contact business component) as an example:

1. If necessary, log on to Siebel Tools, connecting to the local database.
2. Select the Check Out… option in the Tools menu (or press F10).
3. In the Projects list of the Check Out dialog, select the Contact project.

You can type the name of the project on the keyboard to
locate the project faster.

4. Click the Check Out button.
5. A progress dialog is displayed. Wait for the check out process to finish.
6. Navigate to the Contact business component and verify that a pencil icon

appears in the W column, indicating write access.

Chapter 2

[45]

The process for checking out a single object definition, such as the Contact Form
Applet, is similar to checking out a project. The next steps describe the process of
checking out an object definition using the Contact Form Applet as an example:

1. In the Object Explorer, select the Applet type.
2. In the Object List Editor, query for the Contact Form Applet.
3. Right-click the object definition and select Check Out Object.
4. In the dialog box, click the Check Out button.
5. Wait for the process to finish.

At the end of the Check Out process, a Siebel Tools archive file (.sif) is
created automatically in the TEMP folder of the Siebel Tools installation
directory. The file represents the original state of each checked out object
or project at the moment of check out.
These files are used for comparing the modified version of an object
against the original and can be used to restore an object or project to its
original state.
Working with Siebel Tools archive files will be covered in detail later in
this chapter.

Creating or modifying object definitions
Once we have successfully checked out an existing project (or created a new
project locally as described earlier in this chapter), we can start creating new object
definitions. The following sections describe commonly used techniques to create new
object definitions. We will have the opportunity to practice these techniques during
the upcoming chapters of this book.

Developer Tasks

[46]

New Object Wizards
We can use the New Object… option in the File menu or click the New button in
the Edit toolbar to launch the New Object Wizards selection dialog. It is highly
recommended to use a graphical wizard rather than attempt to create the object
definition from scratch. The following screenshot shows the General tab of the
New Object Wizards dialog:

The following table lists all available wizards in the different tabs of the New Object
Wizards dialog:

General Applets EAI Task
Applet Method
Menu

Business Component
(BusComp)

Command

External Table
Schema Import

Multi Value Group
(MVG)

Pick List

Report (Actuate)

Table

View

Chart Applet

Form Applet

List Applet

MVG (Multi
Value Group)
Applet

Pick Applet

Tree Applet

Integration Object

OLEDB Rowset
(obsolete)

Web Service

Data Access Service

Task

Task Form Applet

Task List Applet (8.1
and above)

Task View

Transient Business
Component

Chapter 2

[47]

Creating new records
For simple object types such as Links or Business Objects, we can use the New
Record functionality in the Object List Editor. To do so, we ensure that we have
write access to at least one project, select the desired object type in the Object
Explorer, and then use the Ctrl+N keyboard shortcut in the Object List Editor.

We can then use either the Object List Editor or the Properties window to enter the
necessary data to define the new object.

Copying existing object definitions
Under some circumstances it is easier to copy an existing object definition rather
than create a new one. For example, it takes less effort to copy an existing applet
and change the copy to create a slightly modified version than to create a new
applet from scratch.

To copy an existing record, we must ensure that we have write access to at least one
project and then use the Ctrl+B keyboard shortcut on a selected item in the Object
List Editor.

The new object is an exact copy of the original. It includes all child records that
eventually exist. We have to rename the copy to a unique name (following our
naming convention) before we can begin to modify it.

Creating a new version of existing object definitions
Two object types—Tasks and Workflow Processes—support versioning. We can
use the Revise button in the WF/Task Editor Toolbar to create a new version of a
selected Task or Workflow Process definition.

The new version has the same name as the original but its Version property is
incremented by one. In addition, the Status property of the new version is set to In
Progress, which indicates write access when the object or the project it belongs to is
checked out.

Modification techniques
The Properties window or the Object List Editor are the basic means of editing
new or existing object definitions. Changes are made by entering text (aided by
drop-down lists in many cases) or setting flags. The implicit save feature of Siebel
CRM ensures that modifications on the individual record are saved once the user
steps off the record.

Developer Tasks

[48]

Siebel Tools provides graphical editors for many object types such as Applets, Views,
or Workflow Processes. Changes made in these editors must be saved explicitly
either by using the Ctrl+S keyboard shortcut or by clicking the Save button
in the toolbar.

Using the Comments property to record all modifications as well the
username and date when they occurred is highly recommended. This
practice ensures that other members of the project team can follow the
modification history of any given object clearly.

Validating object definitions
It is good practice to use the Siebel Tools validation utility to verify that all settings
on the object definitions are correct. We can right-click an object definition such as an
applet and select Validate from the menu to invoke the Validate dialog.

Oracle provides pre-built rules that perform various checks against different object
types. In order to inspect these rules and to control whether rules should be enforced
or ignored we can click the Options button in the Validate dialog. The Validation
Options dialog is shown in the following screenshot:

Once the options are set, we click the OK button to go back to the Validate dialog.
Clicking the Start button invokes the validation process. The results are displayed
in the dialog (selecting a message shows the full text in the Details field) and can be
saved to a text file.

Chapter 2

[49]

If validation errors are reported on an object, we must ensure that the problem is
rectified before we continue in the configuration process.

Compiling object definitions
The Siebel Repository File (SRF) contains all repository objects in a structured
format, which is optimized for consumption by the Siebel executable. In order to
be able to test modifications locally we must change the SRF file, which is used by
the Siebel Mobile or Developer Web Client, by compiling the modified objects
or projects.

To do so, we can select one or more object definitions in the Object List Editor and
press Ctrl+F7 to launch the Object Compiler. To compile entire projects we use the
F7 key or the Compile Projects command in the Tools menu.

In the Siebel Repository File field or the Object Compiler dialog, we should
use the Browse button to select the SRF file path, which typically points to a
language-specific subdirectory in the OBJECTS folder of a Siebel Mobile or
Developer Web Client installation directory. The following is an example of a
typical SRF file path for the American English (ENU) version of Siebel Industry
Applications (SIA).

C:\siebel\8.1\Client_1\OBJECTS\ENU\siebel_sia.srf

After we click the Compile button, all client instances that are currently using the
SRF file are brought into a state where the file can be modified (indicated by the
color of the Oracle icon in the Windows system tray changing from red to gray). The
compiler then writes all selected object definitions to the SRF file, using the current
Siebel Tools language to retrieve localized attributes such as applet labels. At the end
of the process, the client instances are brought up again so we can continue to test.

Testing and debugging
A developer uses the local instance of the Siebel Mobile or Developer Web Client
on her or his workstation to verify that the modifications in the Siebel Repository
are valid. This is also called a unit test. Depending on the range of modifications
the test cycle could simply consist of checking the visual layout of a new applet. But
usually testing has to go a bit deeper and could include the creation of test data and
debugging of workflow processes or scripts.

Both the workflow process simulator and the script editor support full range
debugging. For example, developers can inspect the values of script variables
and step through the code line by line.

Developer Tasks

[50]

To enable the debugging functionality in Siebel Tools, we must set the runtime
parameters in the Debug tab of the Development Tools Options dialog. We can
access this dialog by selecting the Options… command in the View menu. The
following screenshot shows the Debug tab:

The following table provides descriptions and example settings to be made in the
Debug tab:

Parameter Description Example Value
Executable The name of the Siebel

executable to invoke.
siebel.exe

CFG file The full path to a Siebel
client configuration file
(.cfg).

D:\SIA81\CLIENT\BIN\ENU\
uagent.cfg

Browser The full path to a browser
executable. Leaving this
parameter empty will result
in the Windows default
browser being used.

Typically left empty when Internet
Explorer is the Windows default
browser.

Working directory The directory where the
Siebel executable file is
located.

D:\SIA81\CLIENT\BIN\

Chapter 2

[51]

Parameter Description Example Value
Arguments Must specify /h for debug

mode. Other arguments
such as /s for SQL spooling
can be added.

/s D:\TEMP\spool.sql/h

User name The username for the
database specified via the
Data source parameter.

AHANSAL

Password The password for the data
source.

(hidden)

Data source The name of the data
source (typically Local).

Local

Enable Profiler Enable or disable the script
profiler utility.

checked

Once these settings are saved, we can use the F5 key to launch the Siebel Mobile or
Developer Web Client in script debug mode or start the Workflow Process simulator.
Both techniques will be discussed in detail later in this book.

When the siebel.exe program connects to a local database, we refer
to it as the Mobile Web Client. When the connection is made to a server
database via the network, it is called a Developer Web Client.

Checking in
Once the changes are tested and verified locally, we must use the Check In
functionality to copy the local projects or object definitions to the server database.
This is the reverse process for checking out. As a result, the data in the server
database is overwritten and the Locked flags are unchecked on both databases,
server and local, resulting in the loss of local write access for the developer.

Other developers can then use the Get or Check Out functionality to obtain the changes
from the server database.

The following steps describe the Check In process:

1. Press Ctrl+F10 or select Check In… from the Tools menu.
2. In the Check In dialog, select one or more projects or objects in the list.
3. Click the Check In button.
4. Wait for the process to finish.

Developer Tasks

[52]

The following screenshot shows the Check In dialog.

The Check In dialog has several options and functionalities, which are described in
the following table:

Option Description
Locked/New Objects Changes the selection to all objects or projects that are locked

in both databases or that have been newly created in the local
database.

Maintain lock When this option is checked, the Locked flag is not set to false
on both databases, thus maintaining exclusive write access for
the developer.

Undo Check Out Removes the locking information in the server database but
keeps the Locked flag in the local database. As a result the
object can no longer be checked in.

Validate Invokes the validation utility for all selected objects or projects.
Diff… Invokes the Compare Objects dialog, which allows visual

comparison between the server and local versions of the
selected objects or projects.

At the end of the Check In process, the archive files (.sif) created by the Check Out
process in the Siebel Tools TEMP directory are deleted automatically.

Chapter 2

[53]

Local locking and prototyping
Under certain circumstances we only need local write access. These circumstances
include prototyping or evaluation of object behavior. We can right-click any object
definition and select Lock Object from the context menu to set the Locked flag only
in the database that we are currently connected to.

Alternatively we can use the Alt+L keyboard shortcut to lock the entire project that
the currently selected object definition belongs to.

Objects that are locked in only one database cannot be checked in. If we wish to keep
the changes we must create an archive file of the object. The next section discusses
how to create archive files.

Archiving object definitions
Siebel Tools supports the creation of archive files, with a .sif suffix, for selected
object definitions or entire projects. As indicated in the previous sections, these
archive files are created during the Check Out process automatically to provide easy
comparison and restoring capabilities. A .sif file contains the XML representation
of the archived objects.

Archive files can also be created manually and have proven very useful for backup
purposes or to quickly provide fellow developers with object prototypes.

We can use the Add to Archive… command in the context menu to add one or
more objects to a list of objects to be archived. The Export to Archive File dialog is
displayed on the first invocation of the command.

It is possible to use the Object Explorer and Object List Editor to select additional
object definitions for the archive file. The following screenshot shows the Export to
Archive File dialog:

When the selection process is finished, we specify the path to the .sif file in the
Archive file field and click the Save button.

Developer Tasks

[54]

Importing archived object definitions
The Import Wizard of Siebel Tools allows importing object definitions from one or
more archive files. The wizard can be invoked from the Tools menu. The following
example process describes how to use the Import Wizard:

1. In the Tools menu, select Import from Archive….
2. In the Select Archive to Import dialog, browse to a .sif file.
3. Click the Open button.
4. In the Preview window of the Import Wizard we can select and delete objects

from the list to exclude them from importing.
5. In the Conflict Resolution section we choose a suitable conflict resolution

strategy. If we are in doubt, we should keep the default setting (Merge).
6. Click Next.
7. In the Review Conflicts and Actions window of the Import Wizard,

we can inspect each object and its attributes and control the conflict
resolution behavior by right-clicking in the Object differences or
Attribute differences list.

8. Click Next.
9. Click Yes to confirm the summary message.
10. Wait for the import process to finish.
11. In the Summary window, click Finish to close the Import Wizard.

Comparing object definitions
As indicated in the section on the Check In process, a comparison utility exists that
allows visual comparison of object definitions in the following ways:

Compare two selected object definitions of the same type
Compare a selected object definition against an object definition of the same
type and name in a different repository
Compare a selected object definition against the content of an archive
(.sif) file

The Compare Objects window can be invoked from the context menu by
right-clicking one or a selection of two object definitions and selecting the
appropriate subcommand of the Compare Objects command.

•
•

•

Chapter 2

[55]

In addition to visualizing the differences between the two selections, the Compare
Objects window supports copying of child objects between the selected parent
objects. Two arrow buttons in the middle of the window serve this purpose. The
target object must be locked for this feature to work.

The copy feature of the Compare Objects window is especially
useful when we wish to avoid repetitive work such as placing the
same button on multiple applets.

Searching the Siebel Repository
Siebel Tools provides a text search utility, which can be invoked from the Search
Repository… option in the Tools menu. The utility allows selecting one or more
object types and executes a full text search on all attributes of the selected object
types. Due to the fact that the average Siebel Repository contains millions of records
and the search is therefore very time consuming, this option should only be used as a
last resort when the standard query option is not applicable.

Integrating external source control
systems
In the Check In/Out tab of the Development Tools Options dialog we can enable
integration of Siebel Tools with an external source control system. When this feature
is enabled, Siebel Tools will execute the batch file specified in the options every time
a developer performs a Check In process.

The batch file—a sample for Microsoft Visual SourceSafe is provided with the Siebel
Tools installation—must be prepared by the development team to invoke the source
control system's specific commands.

When source control integration is enabled, the developer will be prompted for a
comment on each Check In process and an archive file (.sif) will be checked in as
a new version in the source control system.

Developer Tasks

[56]

Automating developer tasks using
command line options
The following tasks can be automated by running the Siebel Tools executable
(siebdev.exe) and other utilities on the command line:

Validate the entire repository
Compile the entire repository
Compare two SRF files
Import from and export to archive (.sif) files
Convert custom labels to symbolic strings
Export object definitions for Application Deployment Manager (ADM)

To run a validation for the entire repository, a quite lengthy process, we have to
invoke the Siebel Tools executable (siebdev.exe) from the command line similar
to the following example:

C:\SIA8\Tools\BIN\siebdev.exe /d Local /u AHANSAL /p tzU87tr /bv

The /d switch specifies the data source while the /u and /p switches provide the
username and password for that data source. Apart from these switches, the /bv
(batch validation) switch will launch the validation utility automatically after Siebel
Tools is started.

To compile the entire repository, also called a Full Compile, we use a command
similar to the following:

C:\SIA8\Tools\BIN\siebdev.exe /d Local /u AHANSAL /p tzU87tr /bc "Siebel
Repository" new.srf /tl ENU

The /bc (batch compile) switch must be followed by the name of the repository
and the name of the new SRF file. If no path is given for the new SRF file, it will be
written to the OBJECTS directory of the Siebel Tools installation folder. The /tl
(tools language) switch defines the language that will be used to compile the
translatable strings.

The /srfdiff switch can be used to invoke the SRF comparison utility. This utility
can also be invoked manually from the Tools menu. The purpose of SRF comparison
is to identify differences between to releases.

•
•
•
•
•
•

Chapter 2

[57]

In addition to the command line options described previously, Siebel Tools supports
automating the export and import of object definitions into and from archive files
(.sif). These two command line options /batchexport and /batchimport, are
typically used while applying maintenance releases. They are documented in the
Using Siebel Tools guide in the Siebel bookshelf.

A specialized command line utility named consoleapp.exe is available to automate
tasks such as converting custom labels to symbolic strings and exporting object
definitions for migration to test or production environments with Application
Deployment Manager (ADM).

Keeping the upgrade in mind
Almost every Siebel CRM project is bound to undergo an upgrade to a newer major
release in the long term. For example, a project team that may have started with
Siebel CRM version 7.8 could have to face the challenge of upgrading to version 8.2
(or later versions).

Every time when the first two digits of the version number change, which is
considered an upgrade as opposed to a patch, which only increases the last two
digits, a new version of the Siebel Repository is delivered from Oracle.

The main effort of a Siebel CRM upgrade project is the so-called Repository Merge
process during which the changes made by customers and Oracle engineers to the
prior standard repository are analyzed and applied to the new customer repository.
The following diagram depicts the merge process using versions 7.8 and 8.1 as
an example:

We can observe that any object definition created by custom developers is copied to
the New Customer Repository, which is the working repository in the next version.

Developer Tasks

[58]

To avoid excess effort during an upgrade project, we should keep the following in
mind during design and implementation of any change to the current version:

Adhere to strict naming conventions. Use a project-specific prefix for
any new object definition (including child level objects such as business
component fields).
Never delete objects defined by Oracle engineering from the repository.
Use the Inactive flag to mark them as inactive.
When changing standard objects (defined by Oracle engineering) use the
Comments field to document the modification history.
Try to keep the following to an absolute minimum:

Changes to the physical schema
Scripting on Applications and Applets
Implementing logic on the user interface (UI) layer in general
(this violates the definition of the UI layer in any programming
environment)

Try to use as much of the preconfigured functionality as possible. It is a fact,
proven by thousands of upgrade projects that every modification made to the
Siebel Repository adds to the complexity and the effort needed to complete
the upgrade process.
When implementing new application functionality is inevitable, follow
the example of Oracle engineering and create business services and
workflow processes.
Avoid reinventing the wheel or rebuilding Siebel CRM to match the
functionality of legacy applications.

•

•

•

•
°
°
°

•

•

•

Chapter 2

[59]

Summary
In this chapter, we discussed the most important pieces of Siebel Tools functionality
that developers typically use in their daily work.

Initializing and populating the developer's database is a mandatory step to
establishing the local development environment.

We followed a typical development process to identify tasks such as checking out,
modifying, and creating new object definitions as well as validating, compiling, and
testing the changes using the Mobile or Developer Web Client.

In addition, Siebel Tools supports development teams with archiving and search
features as well as integration with external source control systems.

In order to achieve a professional and upgradeable implementation of the customer's
requirements we have to follow basic principles that have been laid out in the section
Keeping the upgrade in mind.

In the next chapter, we will introduce the case study scenario, which provides
real-life examples for the remainder of the book.

Case Study Introduction
This chapter introduces the case study that provides input for all configuration
examples throughout the remainder of the book. We will describe All Hardware
(AHA), a fictitious corporation specializing in consumer electronics, its business
processes, and the requirements for the new Siebel CRM system that originate from
these processes.

This chapter intends to establish the (fictitious) business context for the requirements,
which will be implemented throughout the remaining chapters of this book and will
be structured as follows:

Background of All Hardware (AHA)
Description of AHA's Business Processes
Requirements for AHA

Background of All Hardware (AHA)
Since its founding in the nineties, UK based All Hardware (AHA) has been
continually expanding into the European and eastern markets of consumer
electronics. AHA sells all types of devices such as washing machines,
dishwashers, stereos, TVs, as well as computers and peripherals.

AHA runs its own stores (AHA markets) in large cities across Europe some of
which are only opened to registered retailers. In addition, AHA runs several
luxury branded flagship stores and has a well-established internet shop.

One of the businesses with the highest growth rates in the past few years was the
exclusive supply of high-end audio, video, and computer equipment to luxury
hotel chains, driven especially by AHA's investments in the Arabic countries.

•
•
•

Case Study Introduction

[62]

AHA has decided to purchase Oracle's Siebel CRM in order to streamline its IT
systems into a single source of truth. The implementation project has several phases
and spans over several years, after which, so is the intention, AHA's implementation
of Siebel CRM will provide all customer and product-related information to the sales,
service, and marketing departments.

Description of AHA's business processes
The following business processes will serve as requirement sources for this book:

Sales—Update Customer
Sales—Retail Order
Marketing—Campaign Tracking

Sales—Update Customer
Customers, for example, who wish to communicate their new address to AHA can
do so via various channels such as the internet, AHA's customer service line and
the information desks in the AHA markets. AHA strives to make each customer
contact as smooth and positive as possible. In addition, the AHA representative
who processes the data change should also be able to verify all relevant customer
information and, if appropriate, inform the customer about new campaigns
and offers.

A team of business analysts has conducted a series of workshops with key employees
of AHA's customer care, sales, and marketing departments and has created the
following high level outline of the Sales—Update Customer business process:

•
•
•

Chapter 3

[63]

The agent executes a query to identify the customer. If no customer record can be
found, the New Customer Process is triggered. If a customer record is found, it must
be reviewed and changed according to the customer's communication. The agent
then verifies offers for the customer. If one or more offers are displayed, the agent
will propose the offer marked as best offer to the customer and record the customer's
response. If the customer accepts the offer, the New Order Process is triggered. The
process information (start time, end time, and executed steps) as well as data changes
on key fields must be documented during or at least at the end of the process.

Sales—Retail Order
Retailers can use AHA's specialized stores and web shops to purchase bulk items.
Often, these items are slightly damaged and therefore very low priced. Many
retailers specialize in refurbishing these items and sell them on to their local markets.

AHA offers a partner program for high-volume retail customers (AHA Priority
Partners) and wishes to allow both the partner employees and its own employees
to collaborate efficiently during the ordering process.

Case Study Introduction

[64]

The business analyst team has defined the following high level outline of the
Sales—Retail Order business process:

The agent uses a query to identify the retail partner. If no record is found, the New
Retail Partner Process is triggered. If the retail partner exists and has the Always
Generate Quote flag set to Yes, a quote will be created. Before giving the quote to the
customer, it must pass validation rules. When the customer accepts the quote, an
order is generated and submitted. If the customer does not accept the quote, the
quote must be canceled. The process information (start time, end time, and executed
steps) as well as data changes on key fields must be documented during or at least at
the end of the process.

Marketing—Campaign Tracking
In the past, AHA's marketing division has relied on third-party agencies to conduct
the marketing campaigns. Due to the different customer segments (consumers,
retailers, and luxury hotel chains), and in order to have a consistent view on the
customer responses to marketing treatments, the marketing division has joined the
Siebel CRM project.

Chapter 3

[65]

In an effort to completely redesign the marketing strategy, the following high level
business process for campaign tracking was defined with the business analyst team:

The agent identifies the active campaign. Depending on the customer type,
different response information is required and entered by the agent. For retail
partners, an opportunity must be generated in case the response is positive. For
responses from hotel chains, a task must be generated that identifies the need for a
personal follow-up call or meeting. The account manager for the hotel chain must be
notified that a new task has been generated. The process information (start time, end
time, and executed steps) as well as data changes on key fields must be documented
during or at least at the end of the process.

Requirements for AHA
The business analyst team has worked with the business users and a group of
technical solution architects to identify process-related and non-process-related
requirements that the CRM application should fulfill for the first project phase.

Case Study Introduction

[66]

The following table describes the general, non-process-related requirements
that will serve as examples in the upcoming chapters. The Examples in Chapter
column indicates the chapter in this book during which the requirement will be
implemented:

Area Requirement Description Examples in Chapter
User Interface AHA Logo Display the AHA Logo in the

application banner.
15

User Interface Multi-Language
support

Provide all display texts
as translatable strings to
support future rollout in
other countries.

4, 23

User Interface Create orders
for business
customers

End users should be able to
create orders for business
customers directly from the
customer profile form.

16

User Interface Process start page For each process, a start
view must be provided that
displays a summary of the
customer. The start view
must display the customer
profile information, the
documents for the customer
(refer the following), and
the change history for the
customer data.

5, 6, and others

User Interface Navigate to
Process start page

End users should be able
to navigate quickly to the
process start view by using
keyboard shortcuts or the
application toolbar.

16

Reporting Sales
representative
report

Provide the data in the sales
representative info page to
the reporting system.

18

Data Model Last update Show the full name of the
person who committed the
last update on a record.
Clicking on the name should
open an e-mail form.

7

Data Model Constrained lists Limit the amount of data
visible in pick applets.

10

Data Model Field validation Set validation rules for key
attributes of customer, quote,
and order data.

7

Chapter 3

[67]

Area Requirement Description Examples in
Chapter

Data Model Indicators For each customer record,
the number of open service
requests and the number
of campaign contacts in
active campaigns should be
displayed.

7

Data Model Courtesy traffic
light

A traffic light icon should
indicate the level of courtesy
to avoid loss of high value
customers.

8, 15

Data Model Document list AHA wishes to use a single
entity named Customer
Document to contain all
opportunities, quotes, orders,
and campaign responses in a
single list.

9 and others

Data Model Provide the ability
to associate public
notes with any
customer record

Change the existing one-to-
many (1:M) relationship to
many-to-many (M:M).

11

Security Read only data
source

Ensure that a read-only
version of customer, address,
and order data exists.

7

Security Provide a list of
sales tools that
have been created
by the user

A new view titled Sales
Tools created by me must be
created.

12

Process
Monitoring

View hit counter Log all view hits and provide
the data to an analysis tool.

17

Sales—Update Customer
The Sales—Update Customer business process has been proposed by the AHA
business analyst team to ensure the complete auditing of customer interaction.
The following special requirements must be met in the prototype. The numbers in
parentheses identify the chapters in this book during which the requirement will
be implemented:

Documentation of offer presentation. Each time an offer is made to the customer, this
should be documented with the name of the employee, the product offered, the time
of the offer, and the response of the customer. (8, 9)

Case Study Introduction

[68]

Sales—Retail Order
The Sales—Retail Order business process should be facilitated by the Siebel Task UI
module. AHA has made it clear that the following requirements are key acceptance
criteria. The number in parentheses identifies the chapter in this book during which
the requirement will be implemented.

Allow data entry for queries in free form. The system should map the data
entered by the user to the correct fields. (21)
The price list field for a quote or order must not be empty. (7)

Summary
In this chapter, we introduced the fictitious company All Hardware (AHA) and some
of its key business processes and resulting business requirements.

In the remainder of this book, we will use the requirements described in this chapter
to provide real-life examples for configuring Siebel CRM applications.

•

•

Symbolic Strings
Localization is one of the great challenges in software development. It is one thing
to translate text but a much more complex endeavor to ensure that a software
application is capable of being localized for multiple languages and regional settings
(locales). Oracle's Siebel CRM is fully localizable, which ensures that end users can
work with a user interface in their language. In addition all system messages, help
files, and reports can be translated. Dates and numeric information are displayed in
the correct formatting of the end user's locale.

In this chapter, we introduce the centerpiece of Siebel localization—the concept of
symbolic strings. This allows us to ensure that our project adheres to the Siebel
standard of multi-language support. Even if our Siebel application is currently only
deployed in a single language, it is beneficial to apply multilingual techniques from
the start.

The chapter will be structured as follows:

Understanding Symbolic Strings
Creating and using Symbolic Strings
Using Message Categories
Localizing Siebel Applications

Understanding symbolic strings
Symbolic strings are an object type in the Siebel Repository. We can understand how
symbolic strings support the multi-language capabilities of Siebel CRM by looking at
the following example:

Every list or form applet in a Siebel application exposes a button with the text Query
as its caption. There are thousands of applets, and therefore thousands of instances
of the Query button control, in the repository.

•
•
•
•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Symbolic Strings

[70]

Let us imagine that our customer wishes to change the caption text from Query
to Search.

If the caption was stored along with each individual button definition, a developer
would have to check out and manipulate thousands of objects. To avoid this
time-consuming and error-prone effort, each object that displays a text in the
user interface references a Symbolic String definition. The following diagram
illustrates this:

We can observe that each query button references the same symbolic string that
contains the text for each supported language (American English - ENU - and
German - DEU - in the example). A developer who needs to change the caption
of all buttons from Query to Search would only have to update the symbolic
string's English locale record. After compilation, the buttons will show the
new caption.

Siebel Tools provides three properties for each display text. An applet control, such
as the query button in the preceding example, has the following properties to define
its caption:

Caption-String Reference: The reference to a symbolic string object
definition.
Caption-String Override: A manually entered text, overriding the text from
the symbolic string.
Caption: The text to be displayed in the user interface. When a string
override is present, the caption property will be set to the override text.

The following screenshot shows the object definitions for the Contact Form Applet
and its Query button in Siebel Tools:

•

•

•

Chapter 4

[71]

We can see that the control with the name NewQuery has its Caption property
set to Query. Because the Caption - String Override property is empty, the
Caption property uses the text stored in the symbolic string referenced in the
Caption—String Reference property (SBL_QUERY-1005111820-1VI).

In order to inspect, modify, or manually create symbolic strings, we must expose
the Symbolic String object type in the Object Explorer. As discussed in a previous
chapter, this can be achieved by using the Object Explorer tab in the Siebel Tools
options dialog. We can access the options dialog by selecting the Options…
command in the View menu.

After enabling the display of the Symbolic String object type, we can click it in
the Object Explorer window and inspect the symbolic string that served as the
example above. The following screenshot shows the SBL_QUERY-1005111820-1VI
symbolic string:

We observe that the symbolic string has two child records—one for German
(DEU) and one for American English (ENU)—which define the language-specific
string value. The translations are imported into the Siebel Repository during the
installation of the language packs, which are available for more than 20 languages.

When compiling the Siebel Repository File (SRF) for multiple languages we must
first set the Siebel Tools Language using either the options dialog or a command
line switch. One individual SRF file must be compiled for each deployed language.

Symbolic Strings

[72]

Creating and using symbolic strings
Developers can use the predefined symbolic strings, making use of the standard
library of translated display texts, or create additional custom symbolic strings.
We have two options of creating symbolic strings:

Manual creation in Siebel Tools
Automatic creation using batch scripts provided by Oracle

In the following we will explore both scenarios.

Creating symbolic strings manually
We should follow the procedure described as follows to create custom symbolic
string definitions in Siebel Tools. We will create a new symbolic string to be used
in a later section of this chapter:

If necessary, use the Options dialog to expose the Symbolic String object
type in the Object Explorer window.
Create a new project named AHA Symbolic Strings and lock it.
 In the Object Explorer, navigate to the Symbolic String object type.
In the Object List Editor, use the Ctrl+N keyboard shortcut to create a new
record.
Enter X_ERROR_1 as the name for the new symbolic string definition,
keeping the X_ prefix.
Assign the AHA Symbolic Strings project to the new object definition using
the Project property.
Enter a descriptive text such as Error message template 1 for AHA in the
Definitions property.
Click the plus (+) sign left to the Symbolic String object type in the Object
Explorer to expand the object hierarchy.
Select the Symbolic String Locale object type in the Object Explorer.
In the Object List Explorer, use Ctrl+N to create a new record in the
lower list.
Enter ENU in the Language property.
Enter The following error occurred: %1 as the String Value (without the
double quotes).

•
•

1.

2.
3.
4.

5.

6.

7.

8.

9.
10.

11.
12.

Chapter 4

[73]

Repeat steps 10 to 12 to create a German translation with the following
properties:

Language: DEU
String Value: Der folgende Fehler ist aufgetreten: %1

14. Compile the X_ERROR_1 symbolic string.
15. Check in or unlock the project (optional).

Note: The processes of creating and locking objects and projects as well as
checking out, checking in, and compiling have been described in Chapter 2.
If you use the Siebel Sample Database to follow the procedures in this book,
you can only lock and unlock objects or projects. Check in and check out
functionality is not available for the Siebel Sample Database.

A Siebel Tools archive file (Symbolic_String__X_ERROR_1.sif) is provided with
this chapter's code files. The file represents the new symbolic string definition created
in the section previously.

For instructions on how to import the code files in your self-study environment, please
refer to Chapter 2, Developer Tasks or Appendix B, Importing Code Files of this book.

Did you know?
The prefix for custom symbolic string names (X_ by default) can be set
using the SymStrPrefix parameter in the [Siebel] section of the
Siebel Tools configuration file (tools.cfg).
Oracle recommends using X_ as the prefix for custom symbolic strings.

Associating symbolic strings with objects
The following steps describe how to associate symbolic strings with any object
definition that carries a translatable display text. The example uses an applet
control (Birth Date), which needs a different caption:

1. In the Object Explorer, click the Applet object type.
2. In the Object List Editor, query for the Contact Form Applet.
3. Check out or lock the Contact Form Applet.
4. Expand the Applet type in the Object Explorer and click the Control type.
5. In the Object List Editor, query for the control named Birth Date.
6. Observe that the control's caption is currently Date of Birth. We will change

this to Birth Date.

13.

°
°

Symbolic Strings

[74]

7. Copy the current value of the Caption - String Reference property to the
clipboard for later use in the Comments.

8. In the Caption - String Reference column, click the drop-down list to open
the pick dialog.

9. In the Starting with field, enter *Birth* and press Enter.
10. Select the record for Birth Date and click the Pick button.
11. The caption for the Birth Date control is now set to Birth Date.
12. Enter a comment for the Birth Date control to indicate the change. The

Comments property should read similar to this:
AHA: Changed Caption - String Reference from SBL_DATE_OF_BIRTH-
1009094343-5YQ to SBL_BIRTH_DATE-1004225653-00F.

13. Compile the Contact Form Applet.
14. Check in or unlock the Contact Form Applet.

A Siebel Tools archive file (Applet__Contact_Form_Applet.sif) is
provided with this chapter's code files. The file represents the Contact
Form Applet after the changes in the preceding section.

Using batch scripts to create symbolic strings
automatically
As an alternative to the manual creation of symbolic strings, developers can use the
string override properties to type in the display text directly. This approach saves
the developer time and effort. However this approach introduces potential spelling
errors and inconsistencies of display texts across the user interface.

When we use the string override property, the text will be stored as a new child
locale object associated with the original object. For example, using the string
override technique to create a customized caption such as Find a Person for the query
button in the Contact Form Applet results in a new Control Locale record associated
with the button as shown in the following screenshot:

Chapter 4

[75]

We can observe that inserting a value in the Caption - String Override property
of a control results in a separate Control Locale record being created automatically
for the current working language of Siebel Tools.

When developers use the technique described previously, translatable texts reside in
multiple locations. This violates the concept of a central library as established by the
Symbolic String object type.

Did you know?
The compiler detects the separate locale records when an override is used.
From the compiler's perspective, it does not matter whether the translated
string is a child of a symbolic string or of the object itself.
It is however recommendable to use symbolic strings because of easier
administration and maintenance.

Oracle provides two batch scripts that can be used by customers to convert
individual locale records into symbolic strings. The scripts can be found in the BIN
subdirectory of the Siebel Tools installation folder and are named strconv.bat
(for string conversion) and strcons.bat (for string consolidation).

In the following sections, we will describe how to use these batch files.

Using strconv.bat to generate symbolic strings
Before using the batch files for the first time, we must open them in a text editor
of our choice and provide parameter values. The following table describes the
necessary parameter settings for the strconv.bat file:

Parameter Description Example Value
TOOLS_INSTALL Full path to the BIN

directory of the Siebel
Tools installation folder.

D:\SIA81\TOOLS\BIN

CONFIG_FILE Full path to the tools.
cfg file.

D:\SIA81\TOOLS\BIN\ENU\tools.
cfg

TEST_LOCATION Full path to an existing
directory to hold
temporary files generated
by the utility.

D:\TEMP\SYMBOLIC_STRINGS

Symbolic Strings

[76]

The following screenshot shows the respective portion of the strconv.bat file after
the modifications:

The strconv.bat file must be invoked from the Windows command line. The syntax
for the command is as follows:

strconv "Object Type" "Action" "Username" "Password"

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Object Type is the full name of the object type from which the locale records will be
collected. To convert the caption of the button in the preceding example, we must
use Control as the object type. The utility must be invoked once for each object type
that has translatable properties. Examples for such object types are Applet, Control,
List Column, and Business Service Method.

The second input parameter is the name of the action. The conversion process is
split into two separate actions, namely export and import. During the export action,
to be invoked first, the utility exports information about the locale objects into text
files in the temporary directory specified by the TEST_LOCATION parameter. These
text files can optionally be modified before we invoke the import action. Potential
modifications include for example applying a spellcheck or style conventions to the
collected strings.

The import action, executed after the export and optional modification of the
exported files, reads the files, creates new symbolic string object definitions in the
Siebel Repository, and associates them with the object to which the original locale
record was associated.

The Username and Password parameters must be set to valid credentials for the
database, which is specified by the DataSource parameter in the [Siebel] section
of the tools.cfg file (typically set to Local).

Chapter 4

[77]

A command similar to the following executes the export action of the string
conversion utility for the Control object type.

D:\SIA81\TOOLS\BIN\strconv "Control" export AHANSAL tzU87tr

Once the command is complete, which could take a considerable amount of time,
a set of text files can be located in the directory specified by the TEST_LOCATION
parameter in the strconv.bat file.

Did you know?
The strconv and strcons batch files provided by Oracle serve as a
wrapper for the consoleapp.exe utility. This program can be used to
invoke business service methods from the command line.

As indicated previously, the exported files may optionally undergo some corrective
manipulation. After this, we can invoke the import action by using a command
similar to the following:

D:\SIA81\TOOLS\BIN\strconv "Control" import AHANSAL tzU87tr

This command reads all files related to the Control object type from the temporary
directory and creates one new symbolic string object definition for each distinct
text. Furthermore, the symbolic string object will be associated with the object
definition—the Control in the above example—that carried the original string
as a locale record.

Using strcons.bat to consolidate duplicate symbolic
strings
The strcons.bat file works in a similar way to the strconv.bat file. The main
difference is that it exports all custom symbolic string texts to temporary files,
allowing for final spellchecks or manipulation. The import action then consolidates
all duplicate strings into a single symbolic string and corrects the object associations
that point to deleted duplicate strings.

To prepare the strcons.bat file for first use, we have to set the same parameters
that have already been described above for the strconv.bat file.

A command similar to the following invokes the export action for string consolidation:

D:\SIA81\TOOLS\BIN\strcons export AHANSAL tzU87tr

Symbolic Strings

[78]

The two parameters following the export command must be a correct username and
password combination for the database specified by the DataSource parameter in the
[Siebel] section of the tools.cfg file.

The preceding command produces a set of text files in the temporary directory.
We can optionally apply corrective action to these files. A command similar to the
following invokes the final import action:

D:\SIA81\TOOLS\BIN\strcons import AHANSAL tzU87tr

The result of this command is a consolidated (de-duplicated) library of symbolic
strings. The utility also corrects the association of objects to symbolic strings
that have been deleted in the process by associating the object to the surviving
symbolic string.

Using message categories
Symbolic strings not only provide static translatable text snippets for the Siebel user
interface. With the Message Category object type, we find a valuable resource to
store dynamic message text templates in the Siebel Repository.

Messages can be combined with message categories for easier classification. We
can reference the messages in custom scripts, enabling us to adhere to professional
programming standards by avoiding hardcoded text in the program.

Messages can include placeholders for dynamic text replacement at runtime. These
placeholders are specified by the percentage sign (%) followed by a sequential
number. A valid placeholder would be for example %1. At runtime, the developer
can submit arguments to the script functions, which retrieve the message
text and replace the text in the arguments in the sequence identified by the
placeholder number.

The following screenshot shows an example message with a placeholder:

Chapter 4

[79]

The following procedure describes how to create the example message:

1. If necessary, follow the instructions in the section Creating symbolic strings
manually to create a new symbolic string definition named X_ERROR_1
with an English text of The following error occurred: %1.

Note: %1 will be replaced at runtime
as described previously.

2. If necessary, use the options dialog to expose the Message Category object
type in the Object Explorer window.

3. In the Object Explorer window, click the Message Category object type.
4. In the Object List Editor, query for the User Defined Errors message

category. This is an empty category for customer use.
5. Ensure that you have write access to the User Defined Errors message

category by checking it out or locking it locally (if you use the Siebel Sample
Database for self-study purposes).

6. In the Messages list, create a new record (using Ctrl+N).
7. Enter AHA_ERROR_1 in the Name property.
8. Type X_ERR in the Text - String Reference column and press the Tab key to

navigate to the next column.
Observe that the value in the Text - String Reference column is automatically
completed to X_ERROR_1 because X_ERR was unambiguous. Using
the auto-complete feature for pick list fields is recommended to increase
productivity.

9. Compile and check in (or unlock) the User Defined Errors message category.

We will discuss how to use repository messages in detail in a later chapter.

A Siebel Tools archive file (Message_Category__User_Defined_Errors.sif) is
provided with this chapter's code files. The file represents the User Defined Errors
message category after the changes in the above section.

Symbolic Strings

[80]

Localizing Siebel applications
It is a quite common situation that a Siebel CRM application is deployed to users in
foreign countries with different language requirements during later phases of the
project. This means that all objects that have been created by the custom developers
must be translated into one or more additional languages.

Siebel Tools provides the Locale Management Utility (LMU), which assists
developers and business users in the process of translating content. The following
screenshot shows the LMU user interface.

The following procedure describes the localization process from a high level
perspective:

1. Select Tools | Utilities | Locale Management… to invoke the LMU.
2. In the Options tab, select a source and target language and select

applications or projects from which the strings should be exported.
3. In the Untranslated Strings tab, click the Find Strings button.

Chapter 4

[81]

4. The LMU will now scan the repository for all strings that have not been
translated into the target language. Wait for the process to finish.

5. In the Export tab, click the Export button and select a file name and file
type. The LMU supports text files and the XML Language Interchange
File format (XLIFF).

6. The files can now be submitted for translation.
7. After translation, we use the Import tab in the LMU dialog to import the

translated files.
8. The LMU will create the according locale object definitions with the

translated text.

The LMU assists in translating repository content. We must bear in mind that a full
localization of a Siebel application is a time-consuming endeavor and additionally
includes the localization of help files, reports, and List of Values data, to name the
most important resources to be translated. These tasks are out of the scope of
this book.

Summary
Symbolic strings are important object definitions. They are referenced by
almost any object that holds translatable display values such as applet controls
or error messages.

In this chapter, we learned how symbolic strings work and how they can be created.
Developers can create symbolic strings manually or by collecting overridden strings
using the string conversion and string consolidation batch utilities.

The chapter also showed how to create custom message templates and gave an
overview on how to use the Locale Management Utility (LMU) to export strings
for translation and import the translated files.

In the next chapter, we will learn how to create and modify applets.

Creating and
Configuring Applets

In this chapter, we introduce the major user interface elements of Siebel CRM,
namely applets. We will focus on how to create and modify form and list applets.
Other applet types such as pick applets, tree applets, and chart applets are
introduced as well. The case study, introduced in Chapter 3, Case Study
Introduction, will provide input for hands-on practices.

The chapter is structured as follows:

Understanding applets and web templates
Creating and modifying form applets
Creating and modifying list applets
Other applet types

Understanding applets and web
templates
A Siebel applet can be defined as a user interface (UI) element that enables the visual
display and manipulation of data provided by a single business component.

•
•
•
•

Creating and Configuring Applets

[84]

The following table describes the applet types in Siebel CRM:

Applet Type Description
Form Applet Displays one record at a time and provides a great variety of

controls such as text boxes, text areas, check boxes, radio groups,
and images.

List Applet Defines a sequence of list columns and displays a data set
delivered by its associated business component in rows. The
control types are limited to text, check box, and image. The list
layout provides the end user with more flexibility in sorting data
and arranging the list columns.

Pick Applet A specialized list applet and supports dynamic pick lists. End
users can query and sort data in order to find the right record to
associate with the original record. Example: associate an account to
an opportunity.

Multi-Value-Group
(MVG) Applet

A type of list applet used to display the list of records associated
with the original record in a one-to-many (1:M) or many-to-many
(M:M) relationship.

Association Applet Used to display the available records for association in a M:M
relationship. Typically displayed together with the MVG applet in
a shuttle applet.

Chart Applet Displays data from a business component graphically as bar, line,
or pie charts.

Tree Applet Displays data in hierarchical (tree) style.
Task Applet Allows entering transient data in the Siebel Task UI.
Playbar Applet Contains the navigation buttons (Next, Previous, and so on) for the

Siebel Task UI.
Detail Applet Specialized applets such as the About View dialog.

Applet web templates
Each applet definition is associated with one or more Web Templates to define the
visual layout in the browser. Web Template object definitions act as repository-side
pointers to external text files, the Siebel Web Template (SWT) files.

SWT files define the common boilerplate layout for applets, views, and common web
pages such as the application login page. Most applets use the same set of SWT files.
This is the reason why so many standard applets have the same look and feel.

SWT files are situated in the WEBTEMPL subdirectory of the Siebel application
installation folder. Siebel Tools, the Siebel Mobile, Developer Web Client,
and each Siebel Server have a separate WEBTEMPL directory.

Chapter 5

[85]

We can use the Web Template Explorer in Siebel Tools to inspect the SWT files
and their hierarchy. To open the Web Template Explorer, we navigate to View |
Windows | Web Templates Window in the Siebel Tools menu bar. The following
screenshot shows the Web Template Explorer for the CCAppletList_B_EL.swt file:

The file shown in the screenshot is the main template for list applets. It contains
references to other nested files, which define the different sections of a list applet
such as the list header (CCListHeader) and the list body (CCListBody).

The syntax of SWT files is an extended variant of the Hypertext Markup Language
(HTML). Engineers at Siebel Systems created proprietary <swe:> tags, which allow
dynamic generation of HTML content at runtime.

An SWT file mainly consists of so-called placeholders or web template items.
Siebel Tools renders these placeholders as drop targets in the graphical layout
editors and allows the developer to position components such as list columns
and applet buttons.

Did you know?
Oracle recommends refraining from modifications to the SWT
files. This is because changing one template file typically affects
a lot of objects and any modification would have to be reapplied
after an upgrade to a higher version of Siebel CRM.

Creating and Configuring Applets

[86]

The following diagram depicts the relationships between applets, web templates,
and SWT files:

From the diagram we can derive the following facts:

Each Applet has one or more Applet Web Templates
Each Applet Web Template references a Web Template, which points to an
SWT file (external to the repository)
Each Applet Web Template has one or more Applet Web Template Items,
which bind a Control or List Column of the Applet to a placeholder in the
SWT file

Applet web template types
Siebel Tools allows the definition of different types of Applet Web Templates as
described in the following table:

Type Description
Base When an applet is rendered using the Base web template type, the data

displayed by the applet is read-only. To create or modify records, an end
user must bring the applet in Edit, New, or Query mode by issuing the
respective commands via buttons or keyboard shortcuts.

Edit This web template type typically uses a form-based layout to provide the
fields to edit an existing record. It is also used when the applet is used
to create new records or to enter query criteria, if no New or Query type
templates are defined for the applet.
The Edit type is the standard web template type for form applets.

New The New web template type is used when a user creates a new record. It
typically uses a form-based layout.

•
•

•

Chapter 5

[87]

Type Description
Query The Query web template type is used when the user has started a query.

Creating different layouts for queries is a common practice to provide
only a limited set of input fields for query criteria.

Edit List This is the standard web template type for list applets and it allows the
direct manipulation of data in the list.

Creating and modifying form applets
Form applets are the main UI vehicle to display data of a single record. They are
typically used when end users need to view a large number of fields at a time or
during data and query criteria entry.

Because the Siebel Repository already contains hundreds of preconfigured form
applets, we have the following choices when it comes to configuration of the
Siebel UI:

Copy existing applets and modify the copy.
Create new form applets using the Form Applet Wizard.

The first option typically means less effort when the majority of controls can
be reused.

Case study example: Creating a form applet
In Chapter 3 we described the following user interface requirements for the Process
Start Page for the AHA (All Hardware) project:

For each process, a start view must be provided that displays a summary of the
customer. The start view must display the customer profile information, the
documents for the customer, the campaign history (graphically), and the change
history for the customer data.

•
•

Creating and Configuring Applets

[88]

The business analyst team has worked with the end user community to create the
following mock-up diagram for the Process Start Page view:

The form in the upper half of the preceding mock-up diagram will be implemented
as a form applet in Siebel Tools. As an additional piece of information, the business
analyst team has provided the following mapping document, which defines the
fields in the Account business component used for the new form applet:

Control Caption Business Component Field Comments
Customer Name Name
Customer ID CSN
Synonyms Synonym MVG; use Synonym Mvg

Applet as MVG Applet.
Notes (implemented in later

chapter)
Must create new
multi-value fields to allow
association of public notes
to the account.

Main Address Full Address-ENU Calculated Field
(read only).

Main Communication Email Address MVG; to be developed in a
later phase.

Type Type
Status Account Status

Chapter 5

[89]

Control Caption Business Component Field Comments
Partner Partner Flag Display as Checkbox.
Last Status Update Account Status Date Must implement business

logic to populate the field
with the current timestamp
when the Account Status
field is updated.

Status (Indicator) Status Indicator Must be read only.
Class (Indicator) Revenue Class Must create Icon Map

(implemented in a later
chapter).

Campaign Members
(Indicator)

(implemented in a later
chapter)

Show the number of
incomplete campaign
contacts for the customer.

Issues (Indicator) (implemented in a later
chapter)

Show the number of open
service requests for the
customer.

Price List Price List The price list associated
with the customer.

Currency Currency Code The currency code of the
customer's price list.

Limit Credit Auto Approval Limit
Terms Payment Type Standard payment terms

for the customer.
Shipping Address: Street 1 Ship To Street Address MVG; Use Bill To Address

Mvg Applet.
Shipping Address: Street 2 (implemented in later

phase)
Must create a secondary
address field for shipping
address.

Shipping Address: ZIP/City Ship To Postal Code/
Ship To City

Align text fields without
padding.

Shipping Address: State/
Country

Ship To State/
Ship To Country

Align text fields without
padding.

Billing Address: Street 1 Bill To Street Address MVG; Use Ship To Address
Mvg Applet.

Billing Address: Street 2 Bill To Street Address 2
Billing Address: ZIP/City Bill To Postal Code/Bill To

City
Align text fields without
padding.

Billing Address: State/
Country

Bill To State/Bill To
Country

Align text fields without
padding.

Creating and Configuring Applets

[90]

The business analyst team has also indicated that an existing applet—the Account
Profile Applet—can be used as the base for the development of the new form applet,
which should go by the name of AHA Customer Profile Form Applet.

The following procedures use examples from the preceding requirements to
describe different techniques that are useful when we create a new form applet in
Siebel Tools. For the sake of brevity, we will use the string override technique for
non-existing symbolic strings. As discussed in Chapter 4, we can later convert the
overrides to symbolic strings using command line utilities.

Copying an existing applet
A procedure similar to the following can be applied to copy an existing applet:

1. Create a new project named AHA User Interface and lock it.

Note: The project is created to hold all UI objects created in
this and upcoming chapters.

2. Navigate to the Account Profile Applet and use the Ctrl+B keyboard shortcut
to create a copy of it.

3. Rename the copy to AHA Customer Profile Form Applet.
4. Enter AHA User Interface in the Project column.
5. In the Comments property, enter a descriptive text such as Created for

the AHA user interface prototype. Add a date and your username to
the comment.

6. Right-click the new applet and select Edit Web Layout to open the applet in
the layout editor.

Changing caption text using symbolic strings
We can use a procedure similar to the following to change the caption of controls
when needed:

1. Click the gray HTML Form Section labeled Account Information.
2. In the Properties window, click the drop-down icon in the Caption field to

open the String Reference dialog.
3. Use the Starting with field to locate the string with the value

Customer Profile.
4. Click the Pick button.

Chapter 5

[91]

The following screenshot shows the Caption - String Override dialog for the
form section's caption:

5. Use the Ctrl+S keyboard shortcut or click the Save button in the toolbar to
save the changes.

Note: If there is no symbolic string available, we can use the
Caption - String Override property to enter the text manually.
We should use the utilities described in Chapter 4 to convert
the overrides to symbolic string in later phases of the project.
Alternatively we can add a new symbolic string and use it.

Changing the association to a business
component field
We can keep a control in a copied applet and change the Field property to display
data from a different business component field. This is described in the following
procedure. We should only use this technique with text fields that have no value in
the Pick Applet or MVG Applet property:

1. Select the control labeled Site (click the text box - not the label-in the editor).
2. In the Properties window, change the Field property to CSN.
3. Change the Caption property to Customer ID.
4. Change the Name property to AHA Customer ID.

Creating and Configuring Applets

[92]

Note: Renaming the control is a recommended practice to
avoid confusion.

5. Save the changes.

Deleting existing controls
We can use a procedure similar to the following to remove a control and its
accompanying label from the web layout:

1. Right-click the checkbox next to the Public label and select Delete.
2. Delete the Public label also.

If you accidentally delete a control, you can use the Undo functionality (Ctrl+Z) or
retrieve the control from the Controls/Columns docking window.

Moving an existing control to a different location
We can use the mouse to drag controls to different locations in the grid layout.
However, using the keyboard as described below can prove more exact:

1. Use Ctrl+Click to select both the Synonyms control (textbox) and its
accompanying label.

2. Use the arrow keys (you can hold down the key) to position the selected items
below the Customer ID control.

3. Save the changes.

Creating new controls
To create new controls and an accompanying label we use the Palettes window as
described in the following procedure:

1. Drag a Field object from the Palettes docking window to the editor canvas.
2. Drop the object at the location of the Last Status Update control in the

mock-up diagram.
The following screenshot depicts the drag and drop operation:

Chapter 5

[93]

3. In the Properties window, change the Name of the new control to AHA
Account Status Date.

4. Set the Field property to Account Status Date.
5. In the Caption - String Override property, enter Last Status Update.
6. From the Controls/Columns window, drag the AHA Account Status

DateLabel control to the left of the new field.

Note: The label control has been generated automatically-with
the suffix Label appended after the control name-and serves
to display the control's caption text. We should never create a
separate label object for an existing control.

7. Arrange the label and the field according to the mockup diagram.
8. Save the changes.

Creating new form sections
Form sections allow arranging a form applet's controls into groups. A procedure
similar to the following describes how to create new form sections:

1. Drag a Form Section object from the Palettes window to the editor's canvas.
2. Drop the object at the upper-right corner of the canvas (the location of the

Indicators form section in the mock-up diagram).
3. In the Properties window, change the Name of the form section to AHA

Indicators Form Section.
4. In the Caption - String Override property, enter Indicators.
5. Save the changes.

Formatting and aligning multiple controls
To efficiently resize and align multiple controls at once, we can multi-select the
controls and use the Format toolbar as described in the following procedure:

1. Use Ctrl+Click to select multiple controls at once, selecting the control that
should act as a reference (regarding size and relative positioning) last. The
last selected control is indicated by a red border.

2. Use the buttons in the Format Toolbar to modify the alignment, width,
height, and spacing of all selected objects as needed.

Creating and Configuring Applets

[94]

The following screenshot shows the Format Toolbar (in floating mode):

Hovering the mouse cursor over a toolbar button opens a tool tip which
shows a brief explanation of the button's functionality and - if defined - the
associated keyboard shortcut.

3. Save the changes.

Setting the tab order
To set the sequence to be used to set focus on controls when an end user navigates
through the form using the Tab key we use the HTML Sequence property of
the control.

To allow easier modification when new controls are added to the form applet at a
later stage in the project it is recommended that we use a sequence with gaps such
as 5,10,15, and so forth.

Copying controls from other applets using the
compare objects window
We can use the technique described in the following procedure whenever we need to
copy one or more child objects between two objects of the same type:

1. Close the applet editor (right-click the tab and select Close).
2. In the applet list, execute a query that retrieves the AHA Account Profile

Form Applet and the SIS Account Entry Applet (using the OR operator).
3. Use Shift+Click to select both applet definitions in the list.
4. Right-click the list and select Compare Objects | Selected from the menu.
5. In the Compare Objects window, expand the SIS Account Entry Applet

and its child node elements until you can select the Control named Account
Status Indicator.

6. The following screenshot shows the Compare Objects window with the
Account Status Indicator selected in the SIS Account Entry Applet (right):

Chapter 5

[95]

7. Click the second arrow button from the top (pointing to the AHA Account
Profile Form Applet) to copy the control to the other applet.

8. Click Yes to continue.
9. Click Close to close the Comparison window.
10. Open the AHA Account Profile Form Applet in the web layout editor.
11. Drag the Account Status Indicator control and its accompanying label from

the Controls/Columns window as described in the preceding section on
creating new controls.

12. Save the changes.

Adding a show more/show less button
We can use the Compare Objects window as described in the previous section
to copy the ToggleLayout control-which implements the Show More/Show Less
button for form applets-and the corresponding Applet Web Template Item to the
new applet.

Creating and Configuring Applets

[96]

Setting controls to only appear in "more" mode
To display only a control when the end user clicks the Show More button we
right-click the control in the applet layout editor and select More from the context
menu. A down arrow icon appears to the left of the control to indicate that the
control is in More mode.

It is beneficial to arrange the controls that should be shown only in More mode
at the bottom of the form applet. This avoids layout gaps, which could confuse the
end user.

Adding standard buttons
Standard buttons such as New, Query, and Delete are typically available in the
Controls/Columns docking window from where we can drag them to the respective
placeholders when needed. The following procedure serves as an example for this task:

1. Drag the NewRecord minibutton control from the Controls/Columns
window to the button placeholder labeled New.

2. Save the changes.

We will discuss how to create custom buttons later
in this book.

Displaying data in the applet title
To display fields of the current record in the applet title bar, we can use the Compare
Objects window to copy the AppletTitle control and the according Applet Web
Template Item to the new applet. The SIS Account Entry Applet can be used as
a source. The AppletTitle control can be associated with any field in the business
component in order to display its value as meaningful header information.

Setting applet properties for data operations
The following applet properties control what data operations (delete, insert, merge,
or update) are available to end users:

Property Description
No Delete When set to TRUE, deleting records is not allowed.
No Insert When set to TRUE, no new records can be created.
No Merge When set to TRUE, merging of records is disallowed.
No Update When set to TRUE, no updates can be made to existing records.

Chapter 5

[97]

In order to allow all data operations on the AHA Account Profile Form Applet, we
set all of the properties described in the preceding table to FALSE.

Did you know?
By pressing the F1 key, we can open the Object Types Reference
document from the Siebel Tools Online Help. The document is opened
in context with the currently selected object type and provides detailed
descriptions for the properties of the object type.

The following screenshot shows the AHA Account Profile Form Applet in the layout
editor after the modifications required by the business analyst team:

As indicated in the requirements table, some of the applet features will be
implemented in later chapters.

Compiling the new applet
To prepare for testing the applet we close all open editors and select the AHA
Account Profile Form Applet in the object list editor. Pressing Ctrl+F7 opens the
Compile dialog for the selected object.

In the Siebel Repository file field we must specify the full path to an existing SRF
file in the client's OBJECTS/ENU subdirectory.

Clicking the Compile button starts the compilation process.

Creating and Configuring Applets

[98]

Note: We are not able to test the applet in the Siebel Developer
Web Client because the applet is not yet part of a View. We will
create the necessary View object definition in a later chapter.

A Siebel Tools archive file (AHA Customer Profile Form Applet.sif) is provided
with this chapter's code files. The file represents the AHA Customer Profile Form
Applet after the changes in the preceding sections.

Creating and modifying list applets
List applets are used to display multiple records at once. Specialized web templates
are used to create the visual style for list display. List applets typically have more
than one web template in order to control their appearance in certain work modes.

For example, one may be required to assist end users with a detailed form when
they enter new records or query criteria. When a web template of type Edit - using
a form web template - is defined for the list applet, the applet will switch to this
layout when the user clicks the New, Edit, or Query button. The Edit button is only
available in Standard-Interactivity (SI) applications such as the Siebel Partner Portal.

To provide more fine-grained control over the layout of an applet it is possible to
define a separate web template definition for the New and Query modes as well.
When one of these template types is defined for an applet it will switch to the New
layout template when the user clicks the New button and to the Query layout when
the user clicks the Query button.

List applets support end users with the following tasks:

1. Resize list columns for better data visibility.
2. Rearrange list columns using the Columns Displayed dialog.
3. Freeze list columns by double-clicking the column header for easier

horizontal scrolling.
4. Sort data.
5. Compare data.
6. Select and change multiple records at once.
7. Export and print lists.
8. Save and apply target lists for use in marketing campaigns.

Chapter 5

[99]

Case study example: Creating a list applet
The mock-up diagram by the business analyst team - shown in the preceding
section - includes a Data History list applet. The business analyst team indicated
that they wish to create a new list applet based on the Audit Trail Item 2 business
component, which exposes the history of changes recorded in the Siebel Audit Trail
tables. The applet should provide read-only access to the audit trail data. Furthermore,
only the Date and Field controls should be available in Query mode to avoid
performance problems, which may occur when end users execute queries that
include other fields.

Creating a new list applet using the Siebel Tools
new object wizard
Siebel Tools includes wizards for creating new objects, including all types of applets.
In the following example procedure, we will describe the process of creating a new
list applet using the Siebel Tools Wizard. The process for creating other types of
applets such as form or pick applets is similar:

1. In the Object Explorer window, select the Applet type.
2. Right-click in the Object List Editor and select New Object Wizards… | List

Applet from the menu.
3. In the General page of the wizard enter the following information:

Project: AHA User Interface
Name for the applet: AHA Data History List Applet
Display title: Data History
Business component: Audit Trail Item 2
Upgrade behavior: Preserve

The upgrade behavior for custom objects should always
be set to Preserve.

4. Click Next.
5. In the Web Layout - General page of the wizard select the Applet List (Base/

Edit List) template in the upper list.
6. Click the uppermost arrow button to associate the selected web template

with the Base mode of the new applet.
7. In the lower list, select the Applet Form Grid Layout web template.
8. Click the lowermost arrow button to associate the selected web template with

the Edit mode of the new applet.

°
°
°
°
°

Creating and Configuring Applets

[100]

The following screenshot shows the Web Layout - General page of the
wizard with the correct settings:

Audit trail data will only be displayed in read-only mode. This is why we
do not select a template for the Edit List mode. We will modify the Edit web
template later to create a form for querying only dedicated fields.

9. Click Next.
10. In the Web Layout - Fields page, select the following business component

fields and use the right arrow button to add them to the list of selected fields:
Employee Login
Field
Old Value
New Value
Date
Operation
Audit Source

11. Click Next.

°
°
°
°
°
°
°

Chapter 5

[101]

12. Use the left arrow button to remove the following button controls from the
list of selected controls:

DeleteRecord
EditRecord
NewRecord
QueryAssistant
UndoRecord
WriteRecord

13. Click Next.
14. Review the information in the finish page and click Finish.

The new object wizard creates the new list applet and opens it in the layout editor.
As the wizard does not create a 100% complete version, we must edit the two layout
templates. We will describe these procedures in the following sections.

Editing the base layout template
The following procedure describes how to edit the base layout template of a
list applet:

1. In the Controls/Columns window, select 1:Base in the Mode field.
2. Drag the button controls to the respective placeholders as follows:

NewQuery à Query
ExecuteQuery à Go(ExecuteQuery)
UndoQuery à Cancel(Query)

3. Set the Show In List property for the following list columns to FALSE:
Employee Login
Operation
Audit Source

Did you know?
The Show In List property controls - when set to TRUE
- whether the list column will be part of the default set of
visible columns. If the value is set to FALSE, the column will
be part of the Available list in the Columns Displayed dialog.

°
°
°
°
°
°

°
°
°

°
°
°

Creating and Configuring Applets

[102]

4. Use the Compare Objects window as described in the form applet section
to copy the ToggleListRowCount control - which implements the Show
More/Show Less button for list applets - and the respective Applet Web
Template Item from the SIS Account List Applet to the AHA Data
History List Applet.

5. Set the HTML Number of Rows property to 5 to show only five records
when the applet is loaded.

6. Right-click the layout editor and select Preview.
Compare your work with the following screenshot:

7. Right-click the editor and select Preview again to leave the preview mode.
8. Save all changes and close the layout editor.

Now that we have finalized the first web template, we can continue to modify the
other web template definitions.

Editing the query layout template
The following procedure describes how to modify the base template of a list applet:

1. In the Object Explorer window, expand the Applet type and select the
Applet Web Template type.

2. Change the Name and Type property of the Edit web template to Query.
This creates the query template we need to fulfill the requirement described
previously.

3. Right-click the new Query template and select Edit Web Layout.
4. Delete all controls and accompanying labels except for the Date and

Field control.
5. Rearrange the Date and Field control so that they are aligned in one row.

Chapter 5

[103]

6. Compare your work with the following screenshot:

7. Save all changes and close the layout editor.
8. Compile the AHA Data History List Applet.

A Siebel Tools archive file (AHA Data History List Applet.sif) is provided with
this chapter's code files. The file represents the AHA Data History List Applet after
the changes in the previous sections.

Other applet types
While most of the applets in a Siebel application are of either the form or list type,
there are various other applet types available. In this section, we will discuss the
following applet types using examples from Siebel CRM standard applications:

Chart applet
Tree applet
Pick applet
Multi-Value-Group (MVG) and associate applet

Configuring chart applets
Chart applets display business component data in a graphical manner. Examples for
typical charts are vertical or horizontal bar charts, line charts, and pie charts. Siebel
CRM is pre-integrated with the JAVA-based charting engine of VisualMining to
deliver the charting functionality.

•
•
•
•

Creating and Configuring Applets

[104]

Siebel chart applets fill the gap between displaying and exporting data in lists and
full-scale business intelligence (BI) systems such as Oracle Business Intelligence. In
the following, we will use the preconfigured applet named FINCORP Investor
Chart Applet - Lead Status Analysis, which displays opportunity-related data
for a selected account. The chart applet is shown in the following screenshot:

The chart shows the distribution of sales stages across the opportunities for the
selected account (not visible). Drop-down lists allow the end user to toggle to other
applets, select other categories for the X-axis, and select the chart type such as pie or
bar chart.

The most important building block of a chart applet is the Chart child object with its
Chart Elements. The following screenshot shows the Chart object of the FINCORP
Investor Chart Applet - Lead Status Analysis applet in Siebel Tools:

Chapter 5

[105]

The Chart object type defines the fields for the X and Y-axis of the chart as well as the
captions along with color and size information.

The following table describes the most important properties of the Chart object type.

Property Description Example Value
Category Field Defines the business

component fields for the
(horizontal) X-axis of the chart.
Must be entered as a comma
separated list and is rendered
as a drop-down list in the
applet.

Sales Stage,Sales Rep,Close Date,Key
Contact Last Name

Data Point Field Defines the business
component field for the
(vertical) Y-axis of the chart.
Default value is "Id" (the
primary key of the business
component).

Id

Data Function The aggregation operation
to perform against the data
point field. Valid values are
COUNT, SUM, AVERAGE
and PLOT.

COUNT

Type The chart type to be displayed
when the applet is loaded.

2dBar

Picklist Type A comma separated list of
valid chart types. Rendered as
a drop-down list in the applet.

3dBar,3dHorizBar,2dBar,2dHorizBar

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating and Configuring Applets

[106]

We should always use the Chart Applet Wizard to create new chart applets. The
wizard ensures that the correct settings are made for an initial setup, which can be
refined later. We can start the Chart Applet Wizard by right-clicking in the applet list
and selecting New Object Wizards… | Chart Applet.

Configuring tree applets
Tree applets allow end users to view the hierarchical relationships of business
component data in the typical and commonly known style of a file explorer. The
following screenshot shows the Pharma Account Tree Applet, one of the many
preconfigured tree applets in Siebel CRM applications:

Expandable folder icons define the entities while file icons are used to display
the records. End users can quickly view associations between records by using
tree applets.

The main component of a tree applet definition is the Tree object type and its
associated Tree Node elements. The following screenshot shows the Pharma
Account Tree Applet in the Siebel Tools layout editor:

Chapter 5

[107]

The Contact Affiliations tree node is selected. As we can see in the Properties
window in the preceding screenshot, a tree node's purpose is to define a business
component, one of its fields (in the Label Field property) and an applet to display
the business component data when the node is selected in the user interface.

It is recommended that the Tree Applet Wizard is used to create new tree applets.
However, the wizard only produces a boilerplate tree, so we have to manually
modify the wizard's result and add tree nodes as required.

Configuring pick applets
Pick applets are a special type of list applet that are used to display business
component data when an end user clicks the pick icon (a select button with one dot
and a check mark) in a list or form applet. End users can work with the controls in
the pick applet to query or modify the data set.

The following screenshot shows the FINCORP Deal Account Pick Applet in the
Siebel user interface:

By double-clicking a record or clicking the OK button, the selected record will be
associated with the record in the originating applet.

Apart from a set of special controls such as the Find drop-down list, theist, the Starting
with field, and the OK and Cancel buttons, we can treat pick applets as any other
list applet.

We will discuss the process of creating the necessary business layer objects to enable
pick applets later in this book.

Creating and Configuring Applets

[108]

Configuring multi-value-group (MVG) and
associate applets
Multi-Value-Group (MVG) applets serve the purpose of displaying a list of records
that are associated with an existing record. To open the MVG applet, the end user
has to click the MVG icon (a select button with two dots and a check mark) in the
user interface.

MVG applets are used for 1:M or M:M relationships. In the case of M:M
relationships, MVG applets reference an additional applet, which is called an
associate applet. The associate applet displays a list of available data from which the
end user can choose one or more records to associate them with the original record.

An MVG and its associate applet are always displayed in the same browser popup
window. This is also called a Shuttle Applet because of the buttons between the two
applets, which allow end users to work with the data associations.

The following screenshot shows the Account Team Mvg Applet (right) and the
Team Member Assoc Applet (left) in the Siebel CRM user interface:

End users can query in the associate applet to locate one or more positions. Clicking
the Add > button associates the records selected in the associate applet to the
originating record, making the records visible in the MVG applet. The shuttle buttons
are control definitions of the MVG applet.

We can apply our knowledge of creating or modifying list applets to MVG and
associate applets alike. Siebel Tools also provides a New Object Wizard for the MVG
applet type but not the associate applet type.

We will discuss how to create the necessary business layer objects to support MVG
and associate applets later in this book.

Chapter 5

[109]

Summary
Applets are the major building blocks of the Siebel CRM user interface. We can
distinguish between form, list, chart, and tree applets.

Form applets provide enough space to display multiple fields of a single record at
once with the widest variety of controls such as text boxes, checkboxes, images, and
radio groups.

List applets, including the specialized pick, MVG, and associate applets, allow end
users to work in table style, selecting columns for display and sorting data.

Chart applets support graphical display of business component data in the form of
bar charts, line charts, or pie charts.

Tree applets allow end users to visualize the hierarchical relationships of business
component data.

From the developer's perspective, we find a lot of support by means of the
New Object Wizard for all applet types and graphical editors for form, list,
and tree applets.

In this chapter, we used two applet definitions from the case study scenario.
As a result, we can use the form and list applets we produced in this chapter in
the next one where we will discuss how to create and modify View and Screen
object definitions.

Views and Screens
Views and screens are the foundation for the Siebel CRM user interface. In this
chapter, we will learn how to create and configure both object types. The chapter
is structured as follows:

Understanding views and screens
Creating and modifying views
Adding a view to a screen
Registering a new view

Understanding views and screens
From the discussion of Siebel Repository objects in Chapter 1, we know that a screen
is a set of views and a view is a container for one or more applets. To deepen our
understanding of views and screens, we will discuss these object definitions and
their related objects in greater detail in the following sections.

•

•

•

•

Views and Screens

[112]

Understanding views
Views define the largest visible area in the Siebel UI. The following screenshot shows
the preconfigured All Service Request List View. The two applets in the view
consume most of the screen estate:

From a business process perspective, a view is the UI element that must be available
to the end user at a certain step in the process. Only then can a user accomplish the
tasks defined in that step.

Views are made available to end users by administering responsibilities. A
responsibility is a group of users who must execute the same business processes.
A responsibility also defines a list of views that its associated users have access to.
The following diagram depicts the relationships between business processes, users,
views, and responsibilities.

Chapter 6

[113]

From the preceding diagram we can learn the following:

A business process is a set of steps, each of which can be executed in a
Siebel view
Detailed task descriptions of the business process steps reference applets in
this view
Groups of users are assigned to one or more business processes
Responsibilities enable the availability of views to users in Siebel CRM

From the developer's perspective, we can explore the View object type in Siebel
Tools. The following diagram shows the major elements of a view and their
relationships to other objects in the Siebel Repository:

The following can be said about the View object type:

A View typically contains one View Web Template object definition
The View Web Template references a Web Template object definition which
points to a Siebel Web Template (SWT) file outside of the repository
SWT files for views contain applet placeholders
An applet is bound to a placeholder by means of a View Web
Template Item

Siebel Tools provides a graphical editor for views. Developers can arrange applets in
the layout defined by the SWT file using familiar drag and drop techniques.

•

•

•

•

•

•

•

•

Views and Screens

[114]

The following table describes the most important properties of the View object type:

Property Description
Business Object The name of the business object definition that provides the data

context for the view.
Add To History When set to TRUE, the view will be added to the browser history.

When set to FALSE, the view will not appear in the browser
history.

Admin Mode Flag When set to TRUE, the view becomes an administration view,
providing an extended range of privileges to the user, including
full data access. When set to FALSE, the view is a standard view.
Administration views are typically only made accessible to a small
group of administrators. Using these views, administrators can for
example verify data import processes.

Default Applet Focus The name of the applet that should have UI focus when the view
is loaded.

Thread Title Static text that is displayed as the first part of an entry in the
thread bar in the UI. The thread bar allows quick backward
navigation.

Thread Applet The name of an applet in the view. Any field of the business
component of that applet can be used in the Thread Field
property.

Thread Field The name of a field in the thread applet's business component. The
value of that field becomes the second part of the thread bar entry.

Visibility Applet The name of an applet in the view. The business component of
that applet will control the data visibility in the view. When a
visibility applet is specified, the view is considered a visibility
context view and links to it appear in the visibility drop-down
list situated in the parent list applet. If no value is specified, the
view is considered a detail view and links to it appear in the view
tab bar.

Visibility Applet Type Defines the level of data visibility from personal to organization.
Data visibility, also known as Access Control, will be discussed in
a later chapter.

Understanding screens
A screen is a container for views. The Screen object type contains one or more Screen
View items, which define the list of views as well as their sequence, hierarchy, and
captions for view tabs and site map entries in the UI.

Chapter 6

[115]

The site map in the Siebel Web Client displays all views that are available to
the current user. The views are arranged hierarchically for each screen as can
be seen in the following screenshot, which shows the site map entry for the
Administration - Data Validation screen as an example:

A screen is divided into three navigational levels:

Level 1: Aggregate categories (for example Rule Sets in the preceding
screenshot). An aggregate category can contain one or more aggregate
views, detail categories, or detail views.
Level 1 and 2: Aggregate views (for example Validation History in the
preceding screenshot). When an aggregate view is situated in the first level
of a screen it is displayed as a link underneath the screen bar. When an
aggregate view is part of an aggregate category, it can be accessed by the
visibility drop-down list in the upper list applet of the view.
Level 2: Detail categories (for example Rules in the preceding screenshot).
Detail categories are optional. Detail views such as the More Info view in
the above screenshot can exist at this level as well.
Level 2 and 3: Detail views (for example Rule Detail in the preceding
screenshot). If a detail view is a member of a detail category, it is displayed
at the lowest navigational level as a link underneath the view bar.

The following graphic illustrates this concept:

•

•

•

•

Views and Screens

[116]

When end users click on a tab in the screen bar the application navigates to the
view which is defined as the screen's default view in the Siebel Repository. The
link bar below the screen tab allows end users to access aggregate views or
aggregate categories.

The view bar, typically displayed below the first applet in a view, allows access
to detail views or detail categories. When a detail category is opened, a link bar
appears below the view bar, providing links to the detail views.

Developers can view and modify the sequence of views in a screen in the Screen
View Sequence Editor in Siebel Tools. To open the editor, we can right-click
the screen object definition in the object list editor and select Edit Screen View
Sequence. The following screenshot shows the Administration - Rule Sets
screen in the Screen View Sequence Editor in Siebel Tools:

The first part of the captions (to the left of the hyphen) in the sequence editor is the
type of the screen view object.

View web templates
Siebel CRM provides many pre-built web templates for views. These templates
are described in the Siebel Developer's Reference guide in the Siebel bookshelf
documentation library. The list of view templates for employee-facing applications
such as Siebel Call Center can be found at the following URL:

http://download.oracle.com/docs/cd/E14004_01/books/ToolsDevRef/
ToolsDevRef_EmployeeTemplates50.html

The View Detail template is most commonly used and serves as a good starting
point when we create new views.

Chapter 6

[117]

Creating and modifying views
Siebel Tools provides developers with the New View wizard to quickly create views.
The View Editor allows us to inspect and modify existing views. We will use both
utilities in the following section. The high level process of creating a new view can be
laid out as follows:

Create the view using the New View wizard
Arrange the applets on the view layout as needed
Set the applet mode property as needed
Set the thread bar properties
Add the view to a screen
Compile all new and modified repository objects
Register the view in the web client
Associate the view with one or more responsibilities
Test the view

Case study example: Ceating a new view
In Chapter 5, we introduced the requirements around the new AHA Customer
Process Start View and created a form and a list applet to be placed in that view. The
basic view layout has been designed by the business analyst team as shown in the
following diagram:

•

•

•

•

•

•

•

•

•

Views and Screens

[118]

As we have only created two applets so far, we will use preconfigured applets to
occupy the placeholders of the missing applets. The AHA Customer Document
List Applet as well as the necessary business layer objects to support the AHA Data
History List Applet will be created during case study examples in later chapters.

Creating a view using the new view wizard
To create the new view we can follow this procedure:

1. Click the New button in the toolbar. Alternatively select New Object… from
the File menu.

2. In the General tab of the New Object Wizards selection dialog, double-click
the View icon.

3. In the first page of the wizard enter the following information:
Project: AHA User Interface
Name: AHA Customer Process Start View
Title: Customer Process Start
Business Object: Account
Upgrade Behavior: Preserve

4. Click Next.
5. In the View Web Layout - Select Template page select the View Detail web

template.
6. Click Next.
7. In the Web Layout - Applets page use the arrow button pointing to the

Selected Applets list to select the following applets:

Note: We will add one applet later for
demonstration purposes.

AHA Customer Profile Form Applet
Account Contact List Applet
Account Category List Applet

8. Click Next.
9. Click Finish.
10. The layout of the new view is automatically displayed in the View Editor.

°

°

°

°

°

°

°

°

Chapter 6

[119]

The New View wizard places the applets on the first available placeholders
beginning from the top of the template. These placeholders use the entire width of
the screen. We must modify the view layout to conform to the requirements from
the business analyst team where only the top form applet should consume the entire
screen width and the other applets should use only half of the screen width.

Modifying a view in the view web layout editor
The following procedure explains how to move applets to different placeholders in
the view editor:

1. Drag the Account Contact List Applet from its current position (below the
form applet) and drop it on the first placeholder that consumes only the left
half of the view area. This placeholder is situated on the bottom of the layout,
so we have to move the mouse cursor below the lower edge of the editor to
scroll down while dragging.

2. Repeat the previous step for the Account Category List Applet, dropping it
on the first placeholder that consumes only the right half of the view area.

3. Save all changes.

Adding applets to a view in the view web layout
editor
The following procedure describes how to add an applet to an existing view. We
will use the AHA Customer Process Start View for illustration and add the Account
Activity List Applet.

1. From the Applets window, drag the List Applet icon to the placeholder
below the Account Category List Applet and drop it there.

2. In the Pick Record dialog box, select Name in the Find field and type
Account Act* in the Starting with field.

3. Click the Go button.
4. Select the Account Activity List Applet in the list and click the Pick button.
5. Save all changes.

Views and Screens

[120]

Setting the applet mode property
The Applet Mode property of a View Web Template Item controls which of the
available layout modes of an applet is initially displayed when the view is loaded.

The following procedure describes how to set the applet mode property for the AHA
Customer Process Start View:

1. In the View Web Layout Editor, select the Account Category List Applet.
2. Right-click the applet and select View Properties Window.
3. In the Properties window, set the Applet Mode property to Edit List.
4. Repeat steps 1 to 3 for the Account Activity List Applet.
5. Save all changes.
6. Close the editor window.
7. Compile the AHA Customer Process Start View.

A Siebel Tools archive file (AHA Customer Process Start View.sif) is available
with this chapter's code files. The file represents the AHA Customer Process Start
View after the changes in the preceding sections.

Setting the thread bar properties of a view
The thread bar properties control the text that is displayed in the link bar on top of
a view that documents the drilldown path that the end user has chosen to navigate.
Clicking an item in the thread bar allows the end user to quickly navigate back to
previous steps or the beginning of the drilldown path.

Configuring the thread bar properties of a view is discussed in Chapter 14.

Did you know?
Using the Tools | Utilities | Export View Previews command, we can
create a set of HTML files that can be used for proofreading the view and
applet layout early in the development process.
The export feature however does not distinguish the applet layout for
different applications, indicated by the Expression property of the Applet
Web Template Items, and therefore renders form applets distorted when
these applets use the Expression property.

Chapter 6

[121]

Adding a view to a screen
To be able to test the view in the Mobile or Developer Web Client, we must add it
to a screen and register it with at least one of the responsibilities we hold. We will
describe these processes in this and the following section.

The following procedure explains how to add the AHA Customer Process Start
View to the Accounts screen:

1. Navigate to the Accounts Screen object definition in the Object List Editor.
2. Check out or lock the Accounts Screen.
3. Expand the Screen object type in the Object Explorer and select the Screen

View object type.
4. In the list of screen view object definitions, use Ctrl+N to create a new record.
5. Set the following properties (using the Tab key to navigate to the right in

the list):
View: AHA Customer Process Start View
Parent Category: Account List
Viewbar Text - String Override: Process Start Page
Menu Text - String Override: Process Start Page

6. Right-click the Accounts Screen object definition in the upper list and select
Edit Screen View Sequence.

7. In the Sequence Editor select the AHA Customer Process Start View.
8. Use the Ctrl+down arrow keyboard shortcut to move the AHA Customer

Process Start view below the Account Detail View.
9. Click the Save button in the toolbar.
10. Close the Sequence Editor window.
11. Compile the Accounts Screen.

A Siebel Tools archive file (Accounts Screen.sif) is available with this chapter's
code files. The file represents the Accounts Screen after the changes in the
preceding section.

°

°

°

°

Views and Screens

[122]

Registering a new view
The process of registering a view is executed in the Administration - Application
screen in the Siebel Web Client. The following procedure describes how to register
and test the AHA Customer Process Start View. Note that during the process we
will create a new responsibility named AHA Prototype, which will hold all new
views created in the case study examples. This is a typical procedure during early
development phases and only needs to be carried out once:

1. In Siebel Tools, copy the name of the view (AHA Customer Process Start
View) to the clipboard.

2. Ensure that all new and modified object definitions (screens, views, and
applets) are compiled to the local client's SRF file.

3. Start the Siebel Mobile Web Client and log in with your developer
account to the local database. When you use the Siebel Sample Database,
log in as SADMIN.

4. Navigate to the Site Map.
5. Navigate to Administration - Application | Responsibilities.
6. In the Responsibilities list, create a new record and enter AHA Prototype as

the name.
7. In the Users list in the lower-right corner of the view, click the Add button.
8. Select your own user account from the pick list.
9. Click OK.
10. Navigate to Administration - Applications | Views.

The Views link is located in the drop-down list at the right
end of the link bar below the screen bar.

11. In the Views list, create a new record.
12. Paste the view name from the clipboard in the View Name field.
13. Enter AHA UI Prototype in the Description field.
14. In the Responsibilities list, in the lower half of the view, click the

New button.
15. In the Add Responsibilities dialog, use the Starting with field and the Go

button to find the AHA Prototype responsibility.
16. Click the OK button to associate the AHA Prototype responsibility with the

AHA Customer Process Start View.

Chapter 6

[123]

17. From the application menu, select File > Log Out to log out of the
application.

Two ADM data files (Chapter_6_View.xml and Chapter_6_Responsibility.xml)
are provided with this chapter's code files. The files represent the registered AHA
Customer Process Start View and the AHA Prototype responsibility after the changes
in the preceding section. Please refer to the instructions in Appendix B for how to
import ADM data files. The file Chapter_6_View.xml must be imported first.

Testing a new view
Developers must ensure that the new view can be loaded without errors. In addition,
developers should execute typical data operations such as inserting new records
and navigating between records to verify that the view behaves as intended. This is
commonly known as a unit test.

The following procedure describes the unit test cycle for a new Siebel view using the
new AHA Customer Process Start View as an example:

1. Log in to the Siebel Mobile Web Client.
2. Navigate to the Site Map.
3. Navigate to the Accounts screen.
4. Scroll down until you find the entry labeled Process Start Page. (This

is the text entered as the Menu Text. Entries in the Site Map are sorted
alphabetically.)

Did you know?
You can use the browser's text search feature to find entries in
the site map. To open the text search dialog in Internet Explorer,
click the Find (on This Page)… item in the browser's Edit menu.

5. Click the Process Start Page entry in the site map.
6. Verify that the view is loaded without errors and displays the form applet on

top and the three list applets side by side below the view tab bar.
7. Click the Show More button in the upper form applet. Verify that all

controls appear.
8. Click New in the form applet and enter an arbitrary name (for example AHA

Test Account 1) for a test account.
9. Scroll down to the Activities list and create a new record for testing purposes.
10. Create a second test account.

Views and Screens

[124]

11. Navigate back to the first test account and verify that all associated
records appear.

12. Delete the test data if necessary.

If you followed the procedures in this chapter you may want to compare your work
with the following screenshot:

The screenshot only shows the upper half of the new view.

Summary
Views are the major user interface element of Siebel CRM applications. They serve
as a container for applets and support the end users in their daily tasks by providing
the functionality for the business process steps.

Screens define a hierarchical order of views so that end users can quickly navigate
from one view to the other if needed.

In this chapter, we discussed how to create and modify views, add them to a screen,
and register them with a responsibility in the Siebel Client.

In the next chapter, we will learn how to configure business components and
their fields.

Business Components
and Fields

Business Components and their child object types such as Fields and Joins
constitute the focal point of the Siebel business logic layer. In this chapter, we will
introduce the concepts of business components as well as techniques to implement
business components and define the required business logic.

The chapter is structured as follows:

Understanding Business Components
Creating Joins and Fields
Controlling Field Level behavior
Controlling Business Component behavior

Understanding business components
A business component definition represents a single business entity such as the
customer, the products that a company sells, and the orders that customers make.
When solution architects design business models they often use entity relationship
diagrams (ERDs) to describe entities and their relationships to each other. The
following diagram is an example for an ERD:

•
•
•
•

Business Components and Fields

[126]

The diagram defines the entities Customer, Contact Person, Order, and Product. The
crow's feet endpoints of the lines between the entity shapes represent a to many
relationship. A customer can be associated with multiple contact persons while the
same person can be associated with multiple customers. Relationships of this type
are called many-to-many (M:M) and the typical graphical representation is a line
with a crow's foot at each end. The preceding diagram also defines that a customer
can place one or more orders each of which can consist of multiple products.

When the previous simplistic business model would have to be implemented
in Siebel CRM, a technical analyst would map each entity to existing business
components in the Siebel Repository. When an appropriate business component does
not exist, the technical analyst would define a business component to be created.

Did you know?
Siebel Tools provides a graphical Entity Relationship Diagram
designer, which can be used by business analysts or solution
architects to create ERDs and map the entities and attributes to
existing business components andd fields.

The Business Component type defines a set of child object types, which are described
in the following table:

Child Object Type Description
Field Fields define the attributes of the business entity implemented

by their parent business component. Examples for fields are
the first or last name of a person. Single Value Fields (SVF)
map to columns in database tables or can be calculated at
runtime. Multi Value Fields (MVF) map to fields in other
business components. A field definition has many properties
that control its runtime behavior. These properties will be
discussed in detail in this chapter.
Calculated fields use the Siebel Query Language to derive
a value from calculation expressions or other fields. It is
important to understand that calculated fields may have a
negative impact on application performance.

Join Joins define the mappings to additional tables that contain
records that are in a many-to-one (M:1) relationship with the
base record. This enables the business component to display
data from joined tables as single value fields.

Multi Value Link (MVL) A MVL defines a secondary business component that is in a
one-to-many (1:M) or many-to-many (M:M) relationship with
its parent business component. MVLs allow the display of a set
of related records in multi value fields.

Chapter 7

[127]

Child Object Type Description
BusComp View Mode This specialized object type defines the filters for data access

control (also known as visibility). The concept of data access
control will be discussed in a separate chapter.

Business Component
User Prop

User properties allow developers to define advanced runtime
behavior. The availability of user properties is defined by the
business component's class. User properties will be discussed
in a separate chapter.

Business Component
Server Script

A business component has multiple event handlers where
developers can place custom scripts. The concept of scripting
will be discussed in a separate chapter.

The following diagram depicts the hierarchy of business component child object
types and their relationships to other major object types in the Siebel Repository.

We can see that a business component references one base table and multiple
joined tables as well as other business components. Single value fields can reference
columns of the base table directly or use a join definition to reference columns in
joined tables. Multi value fields use multi value link definitions to reference fields in
linked business components. From the discussion of the Siebel Repository metadata
model in Chapter 1 we know that one business component can be accessed by
multiple applets.

Business Components and Fields

[128]

Visualizing business component definitions
The View Details window in Siebel Tools is a useful utility and provides insight into
the mapping of the business component's single value fields to columns in the base
and joined tables as well as the mapping of the multi value fields to fields in linked
business components. We can open the View Details window by right-clicking a
business component definition in the Object List Editor and selecting View Details
from the menu.

The following screenshot shows a portion of the View Details window for the
Loc Mgmt - Location business component, which implements venue locations:

The View Details window allows selecting of the business component, the tables,
and the joins (not visible in the screenshot) as well as the fields and columns. The
Properties window displays the properties of the selected item. An arrow indicates
the mapping of a selected field to either a column in a base or joined table or to a
field in a linked business component.

Business components and SQL
The metadata defined by business components is interpreted by the Siebel executable
at runtime and is used to dynamically generate SQL statements, which are issued to
the underlying relational database.

The following simple scenario uses fields of the Service Request business component
to illustrate how the Siebel executable generates the necessary SELECT statement to
query for service request data in the database.

The following fields, shown in a partial screenshot of the Service Request Detail
Applet, are used for the scenario:

SR Number
Contact Id (not shown in the applet)
Contact Last Name

•
•
•

Chapter 7

[129]

Contact First Name

The Contact Id field is not visible in the user interface but defined by the Join
Specification object associated with the Join object, which is used to fetch data
about the contact person for the service request.

The mapping from the applet controls to business component fields and from there
to columns in tables in the database can be described with the following table:

Applet Control
Caption

Business
Component Field

Table Column

SR # SR Number S_SRV_REQ
(Base Table)

SR_NUM

(Field not exposed
in applet)

Contact Id S_SRV_REQ
(Base Table)

CST_CON_ID

Last Name Contact Last Name S_CONTACT LAST_NAME
First Name Contact First Name S_CONTACT FST_NAME

The following pseudo SELECT statement would be generated if only these fields
would have to be fetched for display. Comments are used to describe the location in
the Siebel Repository where the information for the SELECT statement comes from.

SELECT
S_SRV_REQ.SR_NUM, //Field: SR Number
S_CONTACT.LAST_NAME, //Field: Contact Last Name
S_CONTACT.FST_NAME //Field: Contact First Name
FROM
S_SRV_REQ, //Property: (Base) Table
S_CONTACT //Join: S_CONTACT
WHERE
S_SRV_REQ.CST_CON_ID = //Join Specification: Source Field
S_CONTACT.PAR_ROW_ID //Join Specification: Destination Column

•

Business Components and Fields

[130]

From the preceding pseudo SELECT statement, we can learn that a Join defines the
name of the table to join while the associated Join Specification defines the columns
that should be matched in the WHERE clause of the statement.

The following screenshot shows the S_CONTACT Join and its associated Join
Specification used in the previous example:

The Join Specification references the Source Field (Contact Id), which maps to the
CST_CON_ID foreign key column in the S_SRV_REQ table. The Destination
Column property contains the name of the column (PAR_ROW_ID) in the joined
table (S_CONTACT), which will be used in the WHERE clause to match with the
column referenced by the source field.

Creating joins and fields
A Single Value Field can be mapped either to a column in the business component's
base table, specified by the Table property of the business component, or to a column
in a joined table. In addition, we can use the Siebel Query Language syntax to create
calculated fields.

In this section, we will use a scenario from the case study introduced in Chapter 3,
Case Study Introduction to demonstrate how to create single value fields.

Case study example: Displaying data from
joined tables
As stated in the requirements list in Chapter 3, the customer wishes to display the
full name of the person who committed the last update on a record as a link that
opens an e-mail form. The following procedure describes how to implement this
requirement for the Service Request business component.

Chapter 7

[131]

Case study example: Creating a join
In order to implement the preceding requirement, we must start with creating a new
Join object definition in the Service Request business component. The Join and its
Join Specification will provide the necessary metadata information to get the first
and last name of the user who last updated the record from the S_CONTACT table:

1. Navigate to the Service Request business component.
2. Check out or lock the Service Request business component.
3. In the Object Explorer window, expand the Business Component type and

select the Join type.
4. Use the Ctrl+N keyboard shortcut to create a new Join definition.
5. Enter the following values in the Object List Editor columns:

Table: S_CONTACT
Alias: AHA Updated By - S_CONTACT
Outer Join Flag: Checked
Comments: Created for AHA prototype

6. In the Object Explorer window, expand the Join type and select the Join
Specification type.

7. Use the Ctrl+N keyboard shortcut to create a new Join Specification
definition.

8. Enter the following values in the Object List Editor columns:
Name: AHA Updated By
Source Field: Updated By
Destination Column: PAR_ROW_ID

Case study example: Creating single value fields
The following procedure describes how to create new fields in the Service Request
business component to support the display of the first and last name of the person
who last updated the service request. The new fields will use the join definition
created in the previous section:

1. In the Object Explorer, select the Business Component type.
2. In the Object List Editor, query for the Service Request business component.
3. In the Object Explorer, expand the Business Component type and select the

Field type.
4. Use the Ctrl+N keyboard shortcut to create a new Field definition.

°
°
°
°

°
°
°

Business Components and Fields

[132]

5. Enter the following values in the Object List Editor columns:
Name: AHA Updated By First Name
Join: AHA Updated By - S_CONTACT
Column: FST_NAME
Comments: Created for AHA prototype

6. Create a second Field definition with the following values:
Name: AHA Updated By Last Name
Join: AHA Updated By - S_CONTACT
Column: LAST_NAME
Comments: Created for AHA prototype

7. Create a third Field definition to get the e-mail address of the person:
Name: AHA Updated By Email Address
Join: AHA Updated By - S_CONTACT
Column: EMAIL_ADDR
Comments: Created for AHA prototype

Case study example: Creating calculated fields
The AHA business analyst team has defined the following requirements, which can
be fulfilled by using calculated fields:

Business users wish to display the full name of the person who last updated
a service request record in a single text field. Clicking the name of the person
should open an e-mail form.
The Indicators form section in the AHA Customer Profile Form Applet,
created in Chapter 5, should show the number of open service requests and
the number of campaign contacts in active campaigns for the customer.

The following procedures describe how to use the Siebel Query Language and
its calculation expressions to implement these requirements. We will inspect the
functionality provided by the Siebel Query Language in more detail later in
this chapter.

°
°
°
°

°
°
°
°

°
°
°
°

•

•

Chapter 7

[133]

Using a calculation expression to create an e-mailail link
1. Navigate to the Service Request business component.
2. In the Object Explorer window, expand the Business Component type and

select the Field type.
3. In the Fields list, create a new record and enter the following values:

Name: AHA Updated By Full Name Mailto
Calculated: Checked
Comments: Created for AHA prototype
Calculated Value: "<a href=mailto:" + [AHA Updated By Email
Address] + ">" + [AHA Updated By First Name] + " " +
[AHA Updated By Last Name] + ""

By clicking the ellipsis icon (three dots) in the Calculated Value column, we can
access the Expression Editor which should be our favorite location, to select fields
from the Elements list rather than typing the expression. The following screenshot
shows the Expression Editor with the value for the new calculated field:

The expression uses the plus (+) sign to concatenate HTML text snippets with the
values of the newly created fields in order to fulfill the requirement of allowing end
users to click on the name of the person to send an e-mail.

°
°
°
°

Business Components and Fields

[134]

A Siebel Tools archive file (Service Request BC.sif) is available in this chapter's
code file. The file represents the Service Request business component after the
changes made in the previous sections.

Using calculation expressions to show the number of
related records
The following procedure describes how to create a calculated field which implements
the requirements for showing the number of open service requests and campaign
members for a customer:

1. Navigate to the Account business component.
2. Create a new calculated field for the Account business component and enter

the following values:
Name: AHA Issue Indicator
Calculated: Checked
Comments: Created for AHA prototype
Calculated Value:
GetNumBCRows("Account","Service Request","[Account
Id]='" + [Id] + "' AND [Status]='" + LookupValue('SR_
STATUS','Open') + "'","All")

The GetNumBCRows() and LookupValue() functions are described
later in this chapter during the discussion of the Siebel Query
Language. In short, the preceding expression retrieves the number of
service requests that are associated with the current account and have a
value of Open in the Status field.us field.d.

We can use a similar expression to retrieve the number of campaign members in
active campaigns for the account record. To implement this, we create another
calculated field in the Account business component named AHA Campaign
Indicator and use the following expression in the Calculated Value property:

GetNumBCRows("Campaign Members","Campaign Members","[Account Id]='"
+ [Id] + "' AND [Campaign Status]='" + LookupValue('CAMPAIGN_
STATE','Launched') + "'","All")

The expression retrieves the number of people that are associated with the current
account and are in the target member list of any campaign that has a status of
Launched (which indicates that the campaign is active).

After the changes we must compile the Account business component.

°
°
°
°

Chapter 7

[135]

A Siebel Tools archive file (AccountBC.sif) is available in this chapter's code file.
The file represents the Account business component after the changes made in the
preceding section.

Case study example: Exposing a new field in an
applet
To test the modifications at the business component layer we must expose the new
calculated fields in the presentation layer.

The following procedure outlines the steps to modify the Service Request Detail
Applet in order to show the new calculated field for the e-mail link:

1. Navigate to the Service Request Detail Applet.
2. Check out or lock the Service Request Detail Applet if necessary.
3. Right-click the Service Request Detail Applet and select Edit Web Layout.
4. In the Controls/Columns window, select the active Edit mode template.
5. Drag and drop a Field item from the Palettes window below the

First Name field.
6. Enter the following values in the Properties window:

Name: AHA Updated By Full Name Mailto
Comments: Created for AHA prototype
Caption: Last Updated By
Field: AHA Updated By Full Name Mailto
HTML Display Mode: DontEncodeData
HTML Type: PlainText

By setting the HTML Display Mode property to DontEncodeData we ensure
that the HTML string generated by the calculated field is rendered as a link
in the browser. Setting the HTML Type property to PlainText ensures that
the value is displayed as a text string in the form applet.

7. Drag the accompanying label item (named AHA Updated By Full Name
Mail to Label) from the Controls/Columns window to the left of the
new control.

8. Save all changes.
9. Close the applet editor.
10. Compile the Service Request Detail Applet.
11. Compile the Service Request business component.

°
°
°
°
°
°

Business Components and Fields

[136]

12. Log on to the Siebel Developer/Mobile Web Client and navigate to the
Service Requests screen.

13. Navigate to the My Service Requests view.
14. Create a test record if needed.
15. Verify that the name of the person who did the last update appears and that

it is rendered as a mailto link.

To successfully verify the configuration, the test user must
have an e-mail address. address.dress.

The following screenshot shows the new control in the Service Request Detail
Applet. The browser status bar showing the mailto link is also visible.

A Siebel Tools archive file (Service Request Detail Applet.sif) is available in
this chapter's code file. The file represents the Service Request Detail Applet after the
changes made in the preceding section.

The procedure to expose the new indicator fields in the Account business component
in the AHA Customer Profile Form Applet is similar to the preceding description
and is therefore not laid out in detail.

The following screenshot shows the Indicators form section of the AHA Customer
Profile Form Applet after the modification.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[137]

A Siebel Tools archive file (AHA Customer Profile Form Applet.sif) is available in
this chapter's code file. The file represents the AHA Customer Profile Form Applet
after the changes made in the preceding section.

Controlling field level behaviorbehavior
There are many additional properties of a Field object that drive its behavior at
runtime. The following table describes the most important Field properties:

Field Property Description
Join References a Join object definition to use for a single value field.

If this property is empty and the field is neither a calculated nor
a multi value field, the base table of the business component is
used by the field.

Column The column in the joined or base table to which the single value
field refers.

Calculated When set to TRUE, the field is a calculated field and must have
an expression in the Calculated Value property. Examples for
calculated fields have been provided earlier in this chapter.

Calculated Value The expression to be computed for a calculated field.
Disable Sort When set to TRUE, sorting on the field is not possible.
Force Active When set to TRUE, the SQL statement generated at runtime will

always include the column referenced by the field regardless of
it being exposed by the applet or not. Setting this property to
TRUE negatively affects the application performance.

Force Case When set to UPPER, all characters entered in the field are
converted to uppercase. When set to LOWER, all characters are
converted to lowercase. A value of FIRSTUPPER results in each
first character of a word being converted to uppercase.

Pre Default Value A value (or expression) that is applied as the initial field value
when a new record is created.

Post Default Value A value (or expression) that is applied when a new record is
saved and no value has been entered into the field.

Read Only When set to TRUE, the field is write-protected.
Required When set to TRUE, a value must be provided for the field. Form

applets exposing this field will display a red asterisk in the
control label text.

Type The logical data type for the field. An example value is
DTYPE_BOOL, which interprets a single character column
with a value of Y as true and a value of N as false.

Business Components and Fields

[138]

Field Property Description
Validation An expression that defines a validation rule to be applied when

the record is saved.
Validation Message-
String Reference

A reference to a Symbolic String definition that carries the
translatable text to be displayed when the expression in the
Validation property evaluates to FALSE.

PickList A reference to a Pick List definition that implements the
available values for the field. Pick Lists are discussed in a
later chapter.

Case study example: Field properties
As outlined in Chapter 3, All Hardware (AHA) requires that key attributes of
customer, quote, and order data should be validated. In addition, the price list
field for a quote or order must not be empty.

The validation rules for customer attributes are described by the AHA business
analyst team in the following table.

Field Validation Message to be displayed
Customer
Name

Must be at least three characters long. Please enter at least three
characters for the customer
name.

Founded Date Must be in the past or set to the
current day.

Please enter a valid date in
the Founded Date field.

The following procedures describe how to fulfill the requirements described
previously.

Creating translatable validation messages
To support localization of the validation message text, we should create Symbolic
Strings first.

1. If necessary, create a new project named AHA Symbolic Strings and lock it.
2. In the Object Explorer, select the Symbolic String type. (If it is not visible,

use the Object Explorer tab in the Siebel Tools Options dialog to make
it visible.)

Chapter 7

[139]

3. In the Object List Editor, create a new record and provide the
following values:

Name: X_AHA_VALIDATION_ACCOUNT_NAME
Project: AHA Symbolic Strings

4. In the Object Explorer, expand the Symbolic String type and select the
Symbolic String Locale type.

5. Create a new record in the lower list and enter the following values:
Language: ENU
String Value: Please enter at least three characters for
the customer name

6. Repeat steps 3 to 5 to create another Symbolic String definition with the name
X_AHA_VALIDATION_ACCOUNT_FOUNDED_DATE, which implements
the message for the Founded Date field.

A Siebel Tools archive file (Symbolic Strings.sif) is available in this chapter's
code file. The file represents the symbolic string definitions created in the
preceding section.

Implementing field validation
The following procedure describes how to set the Validation property for the Name
field of the Account business component:

1. In the Object Explorer, select the Business Component type.
2. Query for the Account business component in the list.
3. Check out or lock the Account business component if necessary.
4. In the Object Explorer, expand the Business Component type and select the

Field type.
5. Query for the Name field in the lower list.
6. Enter the following values in the list editor:

Validation: Len([Name])>=3
Validation Message - String Reference: X_AHA_VALIDATION_
ACCOUNT_NAME

7. Compile the Account business component.

°
°

°
°

°
°

Business Components and Fields

[140]

We can repeat the preceding procedure for the Date Formed field of the Account
business component. In order to ensure that only the current date or dates in the
past are entered, we must set the Validation property to <=Today(). The Validation
Message - String Reference property should be set to X_AHA_VALIDATION_ACCOUNT_
FOUNDED_DATE.

To test the changes, we launch the Siebel Mobile or Developer Web Client and
navigate to the More Info view in the Accounts screen. There we create a new test
record with a name which only has two characters. Attempting to save the record
should result in an error message showing the text we defined in the symbolic
string value.

The Founded date field is situated in the large applet on the lower half of the More
Info view. Any attempt to enter a future date and save the record should result in an
error message as well.

A Siebel Tools archive file (Account BC.sif) is available in this chapter's code file.
The file represents the Account business component after the changes made in the
previous section.

Case study example: Creating a required field
The following procedure describes how to fulfill the requirement for not allowing
the Price List field of the Quote business component to be empty by setting the
Required property of the field to TRUE.

1. Navigate to the Quote business component.
2. Check out or lock the Quote business component.
3. Navigate to the Price List field.
4. In the Properties window, set the Required property to TRUE.
5. Compile the Quote business component.

To test the preceding change, we can start the Siebel Mobile or Developer Web
Client and navigate to the Quotes screen. The form applet in the My Quotes view
should now display a red asterisk in the label caption of the Price List control, which
indicates that Price List is now a required field. Any attempt to save a quote record
without a price list should result in an error message.

A Siebel Tools archive file (Quote BC.sif) is available in this chapter's code file.
The file represents the Quote business component after the changes made in the
preceding section.

Chapter 7

[141]

The Siebel Query Language
The syntax for expressions in calculated fields and validations that were used in the
previous example procedures is based on the Siebel Query Language, an expression
language that is used in many locations in Siebel CRM.

The following table describes the locations in Siebel Tools where the Siebel Query
Language can be used:

Location Description
Queries The name-determining application for the Siebel Query

Language. The functions and operators of the Siebel Query
Language can be used to query for data in both Siebel Client
and Siebel Tools.

Business Component/
Applet: Search
Specification

Search Specifications define filter criteria for applets and
business components.

Calculated fields As described in the previous example procedures, the Siebel
Query Language provides many functions and operators for
creating calculation expressions.

Field: Pre Default and Post
Default properties

When default values for fields should be generated
dynamically using the Siebel Query Language, we must
prefix the expression with the keyword Expr: followed by
a space. The expression itself must be enclosed in single
quotes.

Field: Validation property As described in the previous example procedures, Siebel
Query Language syntax can be used to construct validation
expressions.

User properties User properties allow developers to add extended business
logic to various object definitions such as business
components and fields. Many user properties support the
Siebel Query Language. User properties will be discussed in
a separate chapter.

Expressions in workflow
processes and tasks

Developers can use the capabilities of the Siebel Query
Language to process data in workflow processes and task
flows. Workflow processes and tasks will be discussed in
separate chapters of this book.

The following client-based modules of Siebel CRM also make extended use of the
Siebel Query Language:

Predefined Queries
Personalization
Runtime Events

•
•
•

Business Components and Fields

[142]

State Models
Data Validation Manager
EAI Data Maps
iHelp

We can find the full documentation of the Siebel Query Language in the Siebel
Developer's Reference document, which can be found in the Oracle Siebel CRM
online documentation. Version 8.1 of this document can be found at the following
URL: http://download.oracle.com/docs/cd/E14004_01/books/ToolsDevRef/
booktitle.html.

The Developer's Reference and other guides are also available in the Siebel Tools
online help from the Contents command in the Help menu.

The Functions in Calculation Expressions section in the Operators, Expressions and
Conditions chapter of the Siebel Developer's Reference guide describes all available
functions of the Siebel Query Language.

The following table describes important functions of the Siebel Query Language and
provides examples:

Function Description Example and Explanation
[Field reference] We must use square

brackets to reference
business component
fields.

[Id]
References the business
component's ID field.

Today() Returns the current date. Expr: 'Today() + 7'

Can be used in a pre or
post-default value to set a date
field to one week (seven days)
in the future by default.

Timestamp() Returns the current date
and time.

Expr: 'TimeStamp()'

Often used to create pre-default
values with the current date
and time.

IIf(expression,return1,retu
rn2)

Returns the value of the
return1 expression when
the expression evaluates
to TRUE. Otherwise,
the value of the return2
expression is returned.

IIf([Ship
Date]>Today(),0,
Today()-[Ship Date])

If the shipping date is in
the future, return 0 (zero),
otherwise return the number of
days between the shipping date
and today.

•
•
•
•

Chapter 7

[143]

Function Description Example and Explanation
ParentFieldValue
(fieldname)

Returns the value of
the field in the parent
business component.
The Link Specification
property of the parent
field must be set to
TRUE to enable this
functionality.

See next row for an example.

IfNull(expression1,
expression2)

When expression1
returns a value other
than NULL, the IfNull
function returns the first
expression's return value.
Otherwise, the value of
the second expression is
returned.

IfNull(ParentFieldValue
("Commit
Time"),Timestamp())

Returns the value of the parent
business component's Commit
Time field. If that field is empty,
the function returns the current
date and time.

Len(text) Returns the length of the
text string.

Other string
manipulation functions
include Left() and
Right() to truncate
strings.

Len([Name])>=3

Can be used as a field
validation expression to force
users to enter at least three
characters for the Name field.

See the case study example
earlier in this chapter.

+ (String Concatenation) The plus (+) sign can
be used to concatenate
strings.

[First Name] + " " +
[Last Name]

Concatenates the value of
the First Name field, a space
character and the value of the
Last Name field.

LookupValue(
LOV_Type, Language
Independent Code)

The Siebel Query
Language supports
various "Lookup"
functions to query the
List Of Values table.
When a field references
a Pick List definition,
the LookupValue()
function should always
be used to avoid
localization issues.

LookupValue('SR_
STATUS','Open')

Returns the translated value
for the user's current language
of the "Open" entry in the
SR_STATUS type of the List Of
Values table.

Business Components and Fields

[144]

Function Description Example and Explanation
GetNumBCRows(business
object, business component,
search expression, view
mode)

Uses the search
expression to query the
business component
in the business object
context. The view mode
parameter controls
the level of access
control (personal, team,
organization).

The function returns
the number of records
matching the search
expression.

GetNumBCRows("Ac
count","Service
Request","[Account
Id]='" + [Id] +
"'","All")

The previous example has
been implemented in a similar
fashion earlier in this chapter.
The Service Request business
component (linked as a child
in the Account business object)
is queried for all records that
have the value of the Account's
Id field in their Account Id
field. The search expression
is concatenated using double
quotes to separate strings and
single quotes to be used inside
the search string. The search
expression for an example
value of 1-2 for the Id field
would evaluate to:
[Account Id]= '1-2'
The All view mode specifies
that all records for which
a valid owner is specified
are retrieved regardless of
organization visibility.

Julian calendar functions Various functions starting
with the name Julian
allow developers to do
calculations using the
Julian Date format.

JulianYear(Today())-4713

Calculates the current year
number.
The Julian calendar starts
4713 B.C.
For the 1st of January 2011, the
JulianYear function returns
6724 (the number of years since
4713 B.C. Subtracting 4713
from the return value yields the
year number of the Gregorian
calendar (2011).

Chapter 7

[145]

Syntax for pre and post-default values
The syntax for supplying pre or post-default values for fields differs slightly from
the other properties. The following table describes the most important concepts and
enables us to set pre or post-default values correctly:

Scenario Example and Explanation
Using expressions in
Siebel Query Language

Expr: 'Today() + 7'

Expressions in Siebel Query Language must be preceded by the
keyword Expr followed by a colon and a space. The expression
itself must be enclosed in single quotes.
The previous example has been explained in a previous section.

Using values of other
fields

Field: 'Id'

We can provide the value of another single value field that does
not use a join as a pre or post-default value. The keyword Field
must be followed by a colon and a space. The field name must be
enclosed in single quotes.
The previous example passes the value of the Id field.

Using field values
of parent business
components

Parent: 'Account.Id', 'Service Request.Account
Id'

To use values of fields in parent business components, we must
specify the Parent keyword (followed by a colon and a space)
and provide a comma separated list of business component
fields. The business component name and the field name are
separated by a dot (dot notation).
Previous example: When the current parent is the Account
business component, the value of the Account's Id field is
passed. When the parent business component is Service Request,
the value of the Account Id field is passed.

Business Components and Fields

[146]

Scenario Example and Explanation
Using system
properties

System: Creator

To access values of system properties we can use the System
keyword followed by a colon and a space. The name after the
space can be one of the following reserved system properties:

Creator (returns the login name of the current user)
CreatorId (returns the unique Id of the current user)
Currency (returns the current division's currency code)
LocalCurrency (returns the currency of the local machine)
OrganizationName (returns the name of the user's current
organization)
OrganizationId (returns the unique Id of the user's current
organization)
Position (returns the name of the user's currently active
position)
PositionId (returns the unique Id of the user's current
position)
Timestamp (returns the current date and time)
Today (returns the current date)

•
•
•
•
•

•

•

•

•
•

It is important to consider that the data type of the field that defines the pre or
post-default value must match the data type of the return value. For example, we can
only use the System: Today pre-default value on a field that has a logical data type of
DTYPE_DATE or one of the other date related data types.

Source: Siebel Developer's Reference Version 8.1

http://download.oracle.com/docs/cd/E14004_01/books/ToolsDevRef/
ToolsDevRef_Operators13.html

Using the Siebel Query Language
When we use the Siebel Query Language for calculated fields, default values,
or other purposes, we must bear in mind that each calculation that the Siebel
executable has to process decreases the application's performance. For example,
when a list applet exposes a calculated field that uses the GetNumBCRows() function,
an additional query is executed once for each record in the list. Depending on the
amount of records in the respective database tables, this could dramatically increase
the load time of the view.

We must therefore consider each additional calculation expression very carefully and
design our solutions with performance in mind.

Chapter 7

[147]

Controlling business component
behavior
When we inspect business component definitions in the Siebel Repository we find
that the runtime behavior of a business component is defined by a set of properties.
The most important properties are described in the following table.

Property Description
Table The name of the base table of the business component. Fields of

the business component can reference columns in the base table
without the need for a join.

Search Specification A filter definition—in Siebel Query Language—that is used to
fetch only a subset of records from the database.

Sort Specification A comma separated list of field names and the sort order in
which the data should be sorted when the business component
queries the database.

No Delete When set to TRUE, records cannot be deleted by this business
component.

No Insert When set to TRUE, no new records can be inserted by this
business component.

No Merge When set to TRUE, the merge functionality is not available in
this business component.

No Update When set to TRUE, updates to existing records are not possible.
Owner Delete When set to TRUE, only the owner of a record (the person who

holds the primary position on the Team field) can delete it.
Class The C++ class behind the business component defines the base

functionality. Some business components use specialized classes.
The class property must not be changed by customers.tomers.rs.

Case study example: Business component
properties
As described in Chapter 3, one of the requirements for All Hardware's Siebel CRM
implementation is to provide secure read-only access to customer, address, and
order data for external systems.

Business Components and Fields

[148]

The AHA business analyst team has identified the following business component
definitions that implement these three entities:

Account
CUT Address
Order Entry-Orders

The following procedure describes how we can copy existing object definitions
and modify the copies to create customer-owned business components for special
purposes. This process is often referred to as cloning. The example procedure uses
the Account business component to illustrate the process, which is similar for all
other business components.

1. Create a new project named AHA Business Components and lock it.
2. Navigate to the Account business component.
3. Use the Ctrl+B keyboard shortcut to copy the Account business component.

This is a deep copy that includes all child object
definitions and takes a while. a while.e.

4. Modify the copy by entering the following values in the Object List Editor.
Name: AHA Account Read Only
Comment: Created for AHA Prototype; Copy of Account BC
Project: AHA Business Components
Upgrade Ancestor: Account (see the following for details on
the Upgrade Ancestor property)

5. Set the following values in the Properties window to disallow all data
operations except queries on the AHA Account Read Only business
component:

No Delete: TRUE
No Insert: TRUE
No Merge: TRUE
No Update: TRUE

6. Compile the AHA Account Read Only business component.
7. Repeat steps 2 to 6 for the CUT Address and Order Entry-Orders business

component. Rename the copies to AHA CUT Address Read Only and AHA
Order Entry - Orders Read Only.

•
•
•

°
°
°
°

°
°
°
°

Chapter 7

[149]

Siebel Tools archive files representing the three new business component definitions
(AHA Account Read Only BC.sif, AHA CUT Address Read Only BC.sif, and AHA
Order Entry - Orders Read Only BC.sif) are available in this chapter's code file.

Did you know?
The Upgrade Ancestor property references the original object definition
and should be used when an object defined by Oracle engineering (a
standard object) is copied and the project team wishes that changes made
by Oracle engineering to the ancestor are propagated to the clone during
the process of upgrading to a newer version of Siebel CRM.
There may be circumstances where this behavior is not desirable, so
setting the Upgrade Ancestor property for every cloned object without
prior consideration may not be the best idea.est idea.

By setting the four properties starting with No in step 5 of the preceding procedure
to TRUE we prohibit delete, insert, merge, and update operations on any record
accessed by the new business component thus creating a read-only version of the
Account business component.

Summary
Business components and their child object definitions such as joins and fields are
among the most important members of the business logic layer of the Siebel CRM
metadata model.

In this chapter, we learned how business components work and how to create joins
and single value fields.

In addition, we explored how to use expressions in the Siebel Query Language to
define calculated fields and apply validation rules.

Finally, we learned how to create custom instances of business components for the
purpose of supporting read-only data access.

In the next chapter, we will explore the data layer of the Siebel Repository and learn
how to configure its object types. types.pes.

The Data Layer
The data layer of the Siebel Repository defines the physical schema of tables,
columns, and indexes for storing customer, administrative, and repository data.
Developers must understand how the objects of this layer and their relationships
establish the physical foundation for the business layer. Configuration activities
on this layer are limited to additive changes. This means that developers are only
allowed to create new tables or columns but not to modify data layer objects defined
by Oracle engineering.

This chapter is structured as follows:

Understanding tables, columns, and indexes
Considerations for custom schema changes
Using preconfigured extension tables
Creating custom columns
Creating custom indexes
Creating custom tables
Applying schema changes to local and server databases

Understanding tables, columns, and
indexes
As already outlined in Chapter 1, the data layer of the Siebel Repository consists of
the following object types:

Table
Column
Index
User Key

•
•
•
•
•
•
•

•
•
•
•

The Data Layer

[152]

It is important to understand that the information in the Siebel Repository metadata
defines the physical schema in the relational database and not the other way round.
A developer must, for example, define a new table in the Siebel Repository first using
Siebel Tools and then use the Apply functionality to physically create the table in
the database.

The Apply functionality and the ddlsync utility can be used to synchronize the logical
schema (the data layer object definitions in the Siebel Repository) with the physical
schema (the tables and indexes in the relational database).

Both the Apply functionality and the ddlsync utility will be discussed in detail later in
this chapter.

In the following section, we will dive a little bit deeper into the data layer object
types and their properties.

Understanding table types
Besides a unique name, a table object definition must also have a type. The Type
property of a table defines the purpose of the table. The following table describes
the most important table types:

Table Type Description Example Tables
Data (Public) Typical Siebel data tables, which are used to store

records such as customer accounts, assets, service
requests, activities, and so on. One-to-many (1:M)
extension tables also are of this type.

S_ASSET

S_SRV_REQ

S_ASSET_XM
Data (Private) Tables of this type are directly related to Siebel CRM

core modules such as Audit Trail, List of Values, and
Siebel Configurator.

S_AUDIT_TRAIL

S_LST_OF_VAL

Data
(Intersection)

Tables that support many-to-many (M:M)
relationships between other data tables such as the
persons (contacts) associated with a campaign.

S_CAMP_CON

Extension Preconfigured one-to-one (1:1) extension tables for
customer use. These tables are discussed in greater
detail in the next section of this chapter.

S_ASSET_X

Extension
(Siebel)

1:1 extension tables that are used by Oracle
engineering for industry-specific functionality
or the so-called Party Data Model.
Extension tables always reference the table that they
extend in their Base Table property.

S_CONTACT_
FNX

S_CONTACT

Chapter 8

[153]

Table Type Description Example Tables
Interface Tables for exclusive use by the Enterprise Integration

Manager (EIM). They can also be recognized by their
common prefix EIM_.

EIM_ACCOUNT

External Table definitions that reference tables in external
relational databases or presentation tables of the
Oracle BI Server. The prefix for external tables is EX_.

EX_MKT_
REVENUE

Repository These tables store the Siebel Repository metadata
such as applets and business components.

S_APPLET

Understanding columns
Each table definition has multiple column definitions. Each column must have a
distinguished name. The most important properties of a column object definition
are described in the following table:

Column Property Description
Type Normal data columns have a type of Data (Public). In addition, each

table has a set of system columns, which are described later in this
section.

Primary Key When set to TRUE, the column serves as the primary key column
in foreign key - primary key relationships between two tables. This
information is only present in the Siebel Repository metadata and not
in the relational database.

Nullable When set to TRUE, the column can be empty (NULL). When set
to FALSE, the column cannot be empty (NULL). This setting is
propagated to the relational database as NOT NULL.

Required When set to TRUE, the Siebel application logic enforces a non-NULL
value for the column.

Foreign Key Table When a column references a table in its Foreign Key Table property,
it serves as a foreign key. This metadata information is not carried
forward to the relational database. The Siebel application logic fully
caters for referential integrity.

Physical Type The data type that is used by the relational database to store values
for the column. Typical physical types are Varchar (for arbitrary text),
UTC Date Time (for time zone relative timestamps) and Number (for
numerical values).

Length The maximum number of characters to store for text columns.
Precision The maximum number of digits to store for numeric columns.
Scale The maximum number of decimal digits to store for numeric columns.
Default The value to be written to the column when no value is entered.

Typically used for flag columns which use N to indicate the Boolean
state of FALSE and Y to indicate the Boolean state of TRUE.

The Data Layer

[154]

The following screenshot shows selected column definitions of the S_SRV_REQ
table in Siebel Tools:

The screenshot shows examples for system and public data columns of various types.

System columns
As indicated previously, each table in the Siebel CRM schema has a set of columns
of type System. The following table describes the system columns. The System Field
Mapping column in the following table identifies the business component system
field name that maps to the column:

System Column Description Example
Value

System Field
Mapping

ROW_ID Flagged as Primary Key
in more than 99 percent of
all tables. The value in the
ROW_ID column is unique
across all tables in the
enterprise (including mobile
clients).

1-7TW9 Id

CREATED Stores the timestamp
(in Greenwich Mean Time
- GMT) when the record has
been created.

2005-07-01
16:11:28

Created

Chapter 8

[155]

System Column Description Example
Value

System Field
Mapping

CREATED_BY A foreign key column to the
S_USER table. Stores the
ROW_ID of the user who
created the record.

1-Y0GP Created By

LAST_UPD Stores the timestamp (GMT)
when the record was last
been updated.

2010-10-25
05:45:02

Updated

LAST_UPD_BY A foreign key column to the
S_USER table. Stores the
ROW_ID of the user who last
updated the record.

1-Y0GP Updated By

MODIFICATION_
NUM

The number of updates made
to the record.

38 Mod Id

CONFLICT_ID Used to identify a record
that caused a conflict
during the Siebel Remote
synchronization process. A
value of 0 (zero) indicates no
conflict.

0 Conflict Id

DB_LAST_UPD The GMT timestamp of the
last update in the current
database. Different from
LAST_UPD when the
record originated in another
database and was - for
example - imported into the
current database.

2010-08-25
05:45:02

(Not mapped
as a system
field)

DB_LAST_UPD_SRC The source of the last update
in the current database. If the
value is different from User,
the update originates from a
Siebel internal process such
as Assignment Manager.

User (Not mapped
as a system
field)

PAR_ROW_ID This column is only present
in extension tables and serves
as a foreign key to the base
table.

1-AF8 (Not mapped
as a system
field)

The Data Layer

[156]

The View Details window, which we can open by right-clicking a business
component definition, shows the system field mappings. System fields are not visible
in the Fields list and have no properties. The following screenshot shows the View
Details window for the Contact business component:

The Id system field is selected and the arrow indicates the mapping to the ROW_ID
column of the business component's base table—S_PARTY.

Did you know?
Siebel applications use a proprietary mechanism to generate unique
values for the ROW_ID column. ROW_ID values are composed of
a prefix that identifies the database, a hyphen, and a suffix that is
incremented alphanumerically.
The S_SSA_ID table is used by the object manager to store the next suffix
value. ROW_ID values are only used once, which means that when
a record is deleted from the database, the ROW_ID value will not be
generated again.

Understanding indexes
Indexes are typically created to increase query and sorting performance. A typical
Siebel CRM table such as S_CONTACT has dozens of Index object definitions
associated. An Index object definition has one or more Index Column definitions
each of which references a column in the table and defines a sort order and sequence.

Chapter 8

[157]

The following screenshot shows the S_CONTACT_M14 index and its associated
index columns:

This particular index supports queries on the BU_ID, LAST_NAME, FST_NAME,
and PRIV_FLG columns of the S_CONTACT table and supports ascending sorting
on these four columns in the sequence defined by the Sequence property.

The Siebel CRM schema for Industry Applications (SIA) version 8.1 contains more
than 20,000 indexes for more than 4,000 tables.

While indexes speed up query and sorting performance, they decrease the
performance for insert, update, and delete operations because each of these
operations requires an update to all indexes that reference the affected columns.

When we decide to create new tables or columns, we should investigate the query
and sorting behavior of the business components, applets, EAI interfaces, and end
users to determine the best definition of indexes.

Understanding user keys
A table can contain one or more associated User Key object definitions. A user key
is an index that is used to define a set of columns that uniquely define a record. In
relational databases, these objects are also known as unique indexes.

A popular example for a user key is the S_ORG_EXT_U1 definition on the S_ORG_
EXT table. It defines the following columns:

BU_ID (the ROW_ID value of the account's primary organization)
NAME (the name of the account)
LOC (the location or site of the account)

•
•
•

The Data Layer

[158]

The combination of values in these three columns must be unique. This is enforced
by the database, so neither end users nor processes that access the database tables
directly such as Enterprise Integration Manager (EIM) can create records that
violate this unique index.

We can test this behavior by navigating to the All Accounts view in the Siebel Web
Client and trying to create and save an account that has the same values for name
and location. The following screenshot shows the resulting error message, which
indicates that the same values already exist:

Creating table reports
A table report is a formatted document that enables implementation team members
to review information about the selected table, its columns, and their purpose as well
as the table's indexes.

Because of the shift from Actuate Reports to Oracle BI Publisher between Siebel
8.0 and Siebel 8.1, there are two different ways to create table reports. In Siebel 8.0,
Table reports can be created from the Reports menu in Siebel Tools. In Siebel 8.1
and above, table reports can only be created from the Siebel client. The following
procedure describes how to generate a table report in Siebel 8.1 and later:

1. In the Siebel Web Client, navigate to the Administration - Application
screen (using the Site Map).

2. Navigate to the Tables view.
3. Execute an exact query (using double quotes to enclose the search string)

such as S_CONTACT to locate a table.
4. Click the Reports button in the application toolbar and select the Tables

Report.
5. Select an output format such as PDF.

Chapter 8

[159]

6. Click the Submit button.
7. The report is made available for download.
8. Save the report or open it.

The following screenshot shows the table report for the S_CONTACT table:

In addition to table reports that describe one table at a time by formatting the
information that is already available in the Siebel Repository, Oracle also makes the
complete data model documentation with entity-relationship - diagrams available to
its Siebel customers.

These documents named Siebel Data Model Reference can be downloaded for
each Siebel version by licensed customers on the My Oracle Support portal
(http://support.oracle.com).

Considerations for custom schema
changes
The preconfigured data layer objects, which we discussed in the previous
sections—tables, columns, indexes, and user keys - which are defined in the
out of the box Siebel Repository by Oracle, are protected against modifications.

This means that developers are not allowed to make changes to the standard data
layer objects by any means. This includes direct or indirect manipulation of tables
or indexes using SQL scripts, which results in an unsupported state of the Siebel
Repository and could lead to severe problems at runtime and during upgrades to
newer versions of Siebel CRM.

The Data Layer

[160]

The only changes allowed are additive in nature, including the following:

Creating custom tables
Creating custom columns in standard tables
Creating custom indexes on custom and standard tables

Note that creating additional user keys on standard tables
is also not supported.

All these changes must be made by creating or modifying object definitions in Siebel
Tools rather than issuing data definition language (DDL) scripts directly against the
relational database. Siebel Tools provides the necessary mechanisms to create the
respective tables, columns, and indexes from the repository metadata.

A diligent developer or solution architect should always bear in mind that the task
is not complete by just creating additional tables and columns. Depending on the
Siebel CRM technology used in our project, we could find ourselves in the situation
of having to apply additional modifications to the Siebel Repository. The following
list describes these modifications:

Schema changes must be propagated to all databases (mandatory): Every
additional data layer object, be it a single column, an entire table, or an index
must be physically created in all databases. This includes the local databases
of all developers, the server databases for the development, test, and
production systems as well as local databases for mobile users.
EIM table mappings (optional): If Enterprise Integration Manager (EIM)
is used to import, update, export, merge, or delete Siebel data in base tables,
additional EIM table columns or entire EIM tables must be created for
custom columns and tables.
Docking rules for Siebel Remote synchronization (optional): If Siebel
Remote is used to support mobile users, we must create additional metadata,
so-called Dock Objects, to enable routing and synchronization of data in
custom columns or tables.
Indexes and user keys (optional): In the very likely event that the custom
columns or tables are used heavily for queries, additional effort must be
made to create the corresponding Index and User Key object definitions.

The repository modifications described in the previous list require a very high level
of expertise and should only be carried out by seasoned professionals.

•
•
•

•

•

•

•

Chapter 8

[161]

Because of the high level of effort that results from custom schema changes, it is
highly recommendable to explore alternatives first before undertaking the changes.
Alternatives include preconfigured columns and tables, which will be discussed in
the next section.

Using preconfigured extension tables
Because extending the standard database schema is often associated with high
effort and therefore costs, the Siebel data model designers have catered for
so-called extension tables.

These tables are preconfigured to provide physical storage space for additional
custom business component fields and even custom child business components
without the need to create new columns or tables.

The following types of extension tables exist in the Siebel CRM schema:

One-to-one (1:1) extension tables, supporting custom fields
One-to-many (1:M) extension tables, supporting custom child business
components

In the following section, we will discuss these table types and provide case study
examples, how to use them to create new custom business component fields and
custom child business components.

Using 1:1 extension tables
We can describe a 1:1 extension table with the following attributes:

The Type property of the table object definition is Extension or Extension
(Siebel).
The Base Table property is not empty and references an existing table.
The Name property of an 1:1 extension table for customer use has a suffix
of _X.
An extension table has a system column named PAR_ROW_ID, which
serves as a foreign key to the base table.
Each extension table for customer use has a set of columns for each major
data type, which are not mapped to fields in any existing standard business
component. The names of these columns have a prefix of ATTRIB_ followed
by a sequential number.

•
•

•

•
•

•

•

The Data Layer

[162]

The following screenshot from Siebel Tools shows the S_ORG_EXT_X table, which
serves as the 1:1 extension table for the S_PARTY table (the base table for business
components such as Account) thus providing additional storage for customer data:

In order to identify free columns in a 1:1 extension table we can inspect the
Comments property. If the text begins with Used to store… then the column is already
in use by a business component field. Siebel engineers at Oracle use the Comments
property to mark columns in 1:1 extension tables that are already used by standard
business component fields.

In the preceding screenshot, the ATTRIB_07 column has a Comment text of Extension
Attribute, which marks it as free. However, developers at our site could already have
mapped the column in a business component field without having updated the
Comments text.

The following procedure describes how we can use the Flat tab in the Object
Explorer window in Siebel Tools for a secure identification of unused columns in
1:1 extension tables. We use the ATTRIB_07 column in the S_ORG_EXT_X table as
an example:

1. In the Object Explorer window, select the Flat tab.
2. The Object Explorer now shows all object definitions without their

hierarchical context, allowing us to see all object definitions in a flat list.
3. Select the Field object type in the Object Explorer.
4. In the Object List Editor, create the following query:

Join = S_ORG_EXT_X
Column = ATTRIB_07

°
°

Chapter 8

[163]

5. Press Enter to execute the query.
6. The query result list is empty. This indicates that no business component

field exists that references the ATTRIB_07 column in the S_ORG_EXT_X
table.

The previous procedure can be applied to any column for which we need the
information by which business component fields are referenced.

Did you know?
Because of the fact that Oracle engineering obviously makes extended use
of the existing 1:1 extension table columns, many architects at customer
sites argue that it is safer to create custom extension columns or custom
1:1 extension tables.
This argument is valid when the customer plans to create a large number
of additional fields in existing business components. Quite often the
number of new custom fields exceeds the number of available columns in
1:1 extension tables.
However, these extensions must be thoroughly planned especially when
the customer also uses Enterprise Integration Manager (EIM) or Siebel
Remote.

In the following case study example, we will show how to use an existing column in
a 1:1 extension table to create a new custom field in an existing business component.

Case study example: Creating a new field based on
an existing 1:1 extension table column
As indicated in the requirements list for All Hardware (AHA) in Chapter 3, a traffic
light icon should indicate the willingness of AHA to act courteous when a customer
for example has outstanding payments. The business analyst team at AHA has
already done some research and they decided to create a new field in the Account
business component named AHA Courtesy Indicator. The data for the new field
should be stored in the ATTRIB_07 column of the S_ORG_EXT_X table.

The following procedure describes how to create a new field that references an
existing column in a 1:1 extension table of the business component's base table.
We will also ensure that the Comments property of the extension table column is
updated accordingly:

Navigate to the Account business component.
If necessary, check out or lock the Account business component.

1.
2.

The Data Layer

[164]

In the Object Explorer, expand the Business Component type and select the
Field type.
In the Fields list for the Account business component, create a new record
with the following values:

Name: AHA Courtesy Indicator
Join: S_ORG_EXT_X
Column: ATTRIB_07
Comments: AHA Prototype; used for courtesy traffic light

5. In the Object Explorer window, select the Table type.
6. In the Object List Editor, query for the S_ORG_EXT_X table.
7. Check out or lock the S_ORG_EXT_X table.
8. In the Object Explorer, expand the Table type and select the Column type.
9. In the Columns list, query for the ATTRIB_07 column.
10. Set the Comments property of the ATTRIB_07 column to AHA: Used to

store "AHA Courtesy Indicator" to indicate that the column is in use by the
AHA project.

11. Compile the S_ORG_EXT_X table and the Account business component.

Additional requirements exist for the AHA Courtesy Indicator field such
as the creation of a graphical traffic light icon. These procedures will be
covered in later chapters of this book.

Siebel Tools archive files (Account BC.sif and S_ORG_EXT_X.sif) are available in
this chapter's code file. The files represent the Account business component and the
S_ORG_EXT_X table after the changes made in the previous section.

Using 1:M extension tables
One-to-many (1:M) extension tables are provided in the standard Siebel CRM schema
to enable developers to create any amount of custom child business components for
each major business entity such as Account, Asset, and Contact.

1:M extension tables can be described by the following attributes:

The Name property of a 1:M extension table has a suffix of _XM.
1:M extension tables have a PAR_ROW_ID column, which serves as the
foreign key to the parent entity for the child records.

3.

4.

°
°
°
°

•
•

Chapter 8

[165]

The TYPE column allows storing the purpose (child entity) for each record.
The NAME column together with the TYPE and PAR_ROW_ID column is
part of a User Key definition that ensures uniqueness of the combined values
of these columns.
Each 1:M extension table has a set of preconfigured attribute columns for
each major data type to hold the child entity data. The name prefix for these
columns is ATTRIB_.

In contrast to 1:1 extension tables, there is no reason to fear competition with Oracle
engineering in using preconfigured 1:M extension table columns because the TYPE
column allows exact distinction of each record.

In the next chapter, we will use a case study example to demonstrate the creation of a
new child business component on top of a preconfigured 1:M extension table.

Creating custom columns
There are certain circumstances when using preconfigured columns or tables is not
an option. For example, the number or additional custom attributes could exceed the
number of available columns in existing extension tables.

To support a large number of additional custom business component fields it is
common practice to create custom extension columns in one of the tables that are
already in use by the business components. By doing so, we avoid additional joins
and therefore we cause only a minor performance impact.

The following procedure describes how to create a custom extension column in an
existing table, using the S_ORG_EXT table as an example:

Navigate to the S_ORG_EXT table.
Check out or lock the S_ORG_EXT table if necessary.
Navigate to the Columns list for the S_ORG_EXT table.
Create a new column definition with the following values:

Name (example): AHA_EXT_1

X_ will be added as a name prefix automatically.

Physical Type: Varchar
Length: 100
Comments: Created for AHA prototype

•
•

•

1.
2.
3.
4.

°

°
°
°

The Data Layer

[166]

5. Compile the S_ORG_EXT table.
6. Apply the database changes (see upcoming section).

As discussed previously, we must consider the following additional tasks when we
create custom columns or tables:

Applying Database Changes
Creating EIM table mappings
Creating docking rules for Siebel Remote
Creating custom indexes and user keys

In the following sections, we will learn how to create custom indexes and apply
schema changes to local and server databases.

Creating custom indexes
The following procedure describes how to create a custom index definition to
support faster queries and sorting operations on one or more custom columns:

1. Navigate to the S_ORG_EXT table.
2. Check out or lock the table if necessary.
3. In the Object Explorer, expand the Table type and select the Index type.
4. In the Indexes list create a new record.
5. Set the Name to S_ORG_EXT_AHA1.

A suffix of _X will be added automatically.

6. In the Object Explorer, expand the Index type and select the Index
Column type.

7. In the Index Columns list, create a new record with the following values:
Column Name: X_AHA_EXT_1
Sequence: 1
Sort Order: Asc

8. Compile the S_ORG_EXT table.
9. Apply the database changes (see upcoming section).

•
•
•
•

°
°
°

Chapter 8

[167]

A Siebel Tools archive file (S_ORG_EXT.sif) is available in this chapter's code
file. The file represents the S_ORG_EXT table after the changes made in the
preceding sections.

Creating custom tables
To support entirely new business entities or a very large number of extension
columns, Siebel Tools provides the ability to create custom table definitions using
the New Table wizard. The following types of tables can be created:

Standalone tables
1:1 extension tables for existing tables
1:M extension tables for existing tables
Intersection tables to support many-to-many (M:M) relationships

The New Table wizard creates the table and all required system columns as well as
some index and user key definitions. However, any additionally required attribute
columns as well as any required indexes or user keys must be created manually.

Case study example: Creating a custom
standalone table
One of the key requirements of the All Hardware Company is to provide a unified
list of all customer documents (opportunities, quotes, orders, and campaign
responses) to their employees.

The technical architects have determined that a custom table must be created to
support the storage of the document keys. Additional objects will have to be
created in the business and user interface layers (these tasks will be discussed
in later chapters).

The following procedure describes how we can use the New Table wizard to create a
new standalone table to fulfill the requirement:

1. Create a new project named AHA Tables and lock it.
2. Click the New button in the Format toolbar.
3. Double-click the Table icon in the General tab of the New Object Wizards

dialog.
4. In the General tab of the New Table wizard, enter the following:

Name: CX_AHA_DOC

•
•
•
•

°

The Data Layer

[168]

The CX_ (Custom eXtension) prefix should be kept
for all custom tables.

Project: AHA Tables
Table type: Stand-alone Table (keep the default)

5. Click Next.
6. Click Finish.

The wizard generates the table definition and navigates to the Tables list to
display it.

When we inspect the newly created standalone table more closely, we find that it
also contains the following child object definitions:

Nine system columns
An index on the ROW_ID column

The following table, provided by the technical analyst team of AHA, describes the
additional attribute columns, which must be created manually:

Column Name Data Type Length Foreign Key
Table

Description

ACCOUNT_ID Varchar 15 S_ORG_EXT The foreign key to the
document's parent account.

DOC_ID Varchar 15 The unique key of the
document.

DOC_TYPE Varchar 30 The type of the document
such as "Quote".

DOC_STATUS Varchar 30 The status of the document
such as "Active".

DOC_USER_ID Varchar 15 S_USER Foreign key to "responsible
user".

DOC_VER_FLG Character 1 A flag to indicate whether
the document has been
verified by the user.

The process of creating columns has already been described in an earlier section so
it is not laid out here in detail. For the sake of simplicity, we are not creating indexes
for the case study example but this should be strongly considered for real-life
implementations.

°
°

•
•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[169]

In addition, the generation of EIM mappings and docking objects could become
mandatory when a new table is created. This depends on the decision to use
the respective modules (Enterprise Integration Manager and Siebel Remote) in
conjunction with the new table object.

The following screenshot shows the complete CX_AHA_DOC table with the system
columns generated by the New Table wizard and the data columns, which were
added manually:

A Siebel Tools archive file (CX_AHA_DOC.sif) is available in this chapter's code
file. The file represents the CX_AHA_DOC table after the changes made in the
preceding sections.

Applying schema changes to local and
server databases
All additions and modifications to data layer object types such as tables, columns,
indexes, and user keys must become manifest in the physical database.

The Data Layer

[170]

To accomplish this, Oracle provides two utilities, which we will discuss in
this section:

Siebel Tools Apply feature
Synchronize Schema Definition process (ddlsync)

The Siebel Tools Apply feature is typically used by developers against their local
databases but it also works against server databases.

The Synchronize Schema Definition process is intended for use against server databases
and helps in automating the synchronization of the Siebel Repository metadata
information against a physical database.

Using the Siebel Tools "Apply" feature
The following procedure describes how to use the Siebel Tools Apply feature against
a local developer database or the Siebel Sample database to create new columns,
indexes, and tables. We will use the tables created or modified in the case study
examples of this chapter:

1. In Siebel Tools, navigate to the Table object type.
2. In the Tables list, use the Changed column to query for all table object

definitions that have been recently modified or created.

The S_ORG_EXT table and the CX_AHA_DOC table should appear
in the result set. If not, query for them using the Name column.

3. Click the Apply/DDL button on top of the list.
4. In the Choose Option dialog, select the Apply option.
5. Click OK in the warning message that indicates that you are connected to a

local database.
6. If you are using a local developer database, continue with step 7. If you are

using the Siebel Sample database, proceed to step 8.
7. For a local developer database, set the following options in the Apply

Schema dialog:
Tables: Current Query
Database user: SIEBEL

•
•

°
°

Chapter 8

[171]

SIEBEL is the default table owner.

Database user password: (enter your local password)

The table owner password in local developer
databases is the same as for the mobile user.

ODBC Data Source: (keep the default)
8. For the Siebel Sample database, set the following options in the Apply

Schema dialog:
Tables: Current Query
Database user: DBA

DBA is the default administrator account for
Sybase databases.

Database user password: SQL
ODBC Data Source: SEAW Samp Db default instance

Replace the default value with the name of the
ODBC DSN for the Siebel Sample database.

9. Click Apply.
10. Wait for the process to finish.
11. Click OK in the message that indicates that all changes were successfully

applied.
12. Check in or unlock the new and modified table object definitions.

°

°

°
°

°
°

The Data Layer

[172]

Did you know?
The Generate DDL option in the Choose Options dialog allows saving the
data definition language (DDL) statements to a file rather than executing
them directly against the database. Nonetheless, the ODBC connection
must be made to compare the Siebel Repository metadata against the
current schema of the database.
The Siebel Tools Apply feature can also be used against server databases.
To do this we have to log in to Siebel Tools against the server database
and use the table owner password for the server database in the Apply
Schema dialog.
After applying database schema changes against a server database we
also have to click the Activate button on top of the tables list. This ensures
that the schema version information in the S_APP_VER system table is
updated. The S_APP_VER table is used by several server components
to verify that the schema information in the so-called data dictionary
file (diccache.dat) on the server is correct. When the schema version
number in the S_APP_VER table and the diccache.dat file are
different, a new diccache.dat file is created by reading the current
physical schema from the database.

Verifying the application of local database
changes
The local databases used for Siebel developers and remote users as well as the Siebel
Sample database are Sybase Adaptive Server Anywhere databases. We can use
Sybase's Interactive SQL utility, which is delivered with Siebel Tools to connect to
the database and verify that the physical changes have been applied. We must also
use this utility to execute DDL scripts generated by Siebel Tools (as described in the
information box above).

The following procedure describes how to use Interactive SQL to connect to the local
developer database:

1. Use Windows Explorer to navigate to the BIN subdirectory of the Siebel
Tools installation folder.

2. Double-click the dbisql.exe program.
3. In the Connect to Adaptive Server Anywhere dialog, click the Database tab.

Chapter 8

[173]

4. Click the Browse button.
5. In the Files of type drop-down at the bottom of the browse dialog, select All

Files (*.*).
6. If you are using a local developer database, continue with step 7. If you are

using the Siebel Sample database, proceed to step 8.
7. To connect to a local developer database, execute the following steps:

i. Browse to the LOCAL subdirectory of the Siebel Tools installation
folder.

ii. Select the sse_data.dbf file and click Open.
iii. Click the Login tab in the Connect to Adaptive Server Anywhere

dialog.
iv. Enter SIEBEL as the User ID.
v. Enter your local database password in the Password field.
vi. Click OK.

8. To connect to a Siebel Sample database, execute the following steps:
i. Browse to the SAMPLE\UTF8 subdirectory of the Siebel Client

installation folder.
ii. Select the sse_samp.dbf file and click Open.
iii. Click the Login tab in the Connect to Adaptive Server

Anywhere dialog.
iv. Enter DBA as the User ID.
v. Enter SQL in the Password field.
vi. Click OK.

9. In the Command window in the bottom area of the Interactive SQL utility,
enter an SQL statement similar to the following:
select * from CX_AHA_DOC

10. Click the Execute button.
11. Verify that no Table not found… error is displayed and that the columns of

the table appear in the Data window. We can scroll right in the Data window
to verify the existence of all columns we defined in Siebel Tools.

12. Close the Interactive SQL utility.

The Data Layer

[174]

The following screenshot shows the Interactive SQL utility after the example SQL
statement execution:

Using the synchronize schema definition
process
As indicated previously, the Synchronize Schema Definition process provides the
ability to automate the synchronization of the data layer object definitions in the
Siebel Repository, also known as the logical schema, with the physical schema of
server databases.

The process is part of the Siebel Database Server Utilities which are typically
installed on at least one Siebel Server in the Enterprise. For details on how to install
the Database Server Utilities, please refer to the book Oracle Siebel CRM 8 Installation
and Management by the same author. In addition, the Installation Guide in the Oracle
Siebel documentation library can be recommended (http://download.oracle.
com/docs/cd/E14004_01/books/SiebInstWIN/booktitle.html).

The Synchronize Schema Definition process is also part of the Repository Migration
process (covered in a later chapter), which is offered as well by the Siebel Database
Server Utilities. It is important to understand that any new or modified data layer
object definition must exist in the Siebel Repository in the same database that the
utility acts upon.

For development environments this means that we must check in the respective
tables before starting the utility. For test and production environments the
Repository Migration process should be used to import the new repository
metadata and synchronize the logical and physical schema.

Chapter 8

[175]

The following procedure describes how to execute the Synchronize Schema
Definition process against an Oracle database. In the example procedure, we execute
the wizard on a Microsoft Windows operating system. The procedure is similar on
Linux and other UNIX-based operating systems:

Step Description Tasks and Example Values
1 Start the Siebel Configuration

Wizard.
Click the Database Server Configuration shortcut
in the Windows start menu.

2 Siebel Server directory Provide the path to the Siebel Server's installation
directory.
Typically, the default can be kept.
Click Next.

3 Siebel Database Server
Utilities directory

Provide the path to the Siebel Database Server
Utilities installation folder.
Typically, the default can be kept.
Click Next.

4 Database Platform Select Oracle Database Enterprise Edition.
Click Next.

5 Task selection Select Run Database Utilities.
Click Next.

6 Action selection Select Synchronize Schema Definition.
Click Next.

7 UNICODE selection Select whether the database is operating on a
UNICODE codepage or not.
Click Next.

8 Select base language Select English (American).
Click Next.

9 ODBC Data Source Name
(source)

Example: SIEBELEVAL_DSN

This is the name of the
System DSN for the source
enterprise which can be
found in the Windows ODBC
Administration console.

Click Next.
10 Siebel Database User Name

and Password
User Name: SADMIN
Example Password: TJay357D
Click Next.

The Data Layer

[176]

Step Description Tasks and Example Values
11 Siebel Database Table Owner

and Password
Table Owner: SIEBEL
Example Password: dQ7JXufi
Click Next.

12 Source and target repository
name

Keep the defaults (Siebel Repository)
Click Next.

13 Index and data tablespace
names

Example Index Table Space Name: SIEBELDB_
IDX
Example (Data) Table Space Name: SIEBELDB_
DATA
Click Next.

14 Repository Name Typically Siebel Repository can be kept.
Click Next.

15 Oracle parallel indexing Keep the default (Does not use…)
Click Next.

16 Security group and log output
directory

Keep the defaults.
Note the log output directory will become a
subdirectory of the Siebel Server's LOG directory.
Click Next.

17 Apply configuration changes Select Yes apply configuration changes now.
Click Next.

18 Summary Review the summary information.
Click Next.

19 Do you want to execute
configuration?

Click Yes.

20 The Siebel Upgrade Wizard is
displayed.

Click OK in the Siebel Upgrade Wizard dialog.

21 During the process, several
command windows are
opened

Ensure that you do not close or make selections in
any of the command windows.
Wait for the Siebel Upgrade Wizard to complete.

22 The configuration wizard
displays a message Execution
successful

Click OK to confirm successful execution of the
configuration wizard.

23 The configuration wizard
jumps to the Siebel Server
directory selection

Click Cancel in the Siebel Configuration Wizard
dialog.

Chapter 8

[177]

Step Description Tasks and Example Values
24 Confirm exiting the

configuration wizard
Click Yes

25 Siebel Upgrade Wizard
displays Complete

Click OK in the Siebel Upgrade Wizard dialog.

We can verify the successful creation of new tables, columns, or indexes by issuing
DDL statements such as desc against the server database. On Oracle databases we
can use Oracle's SQL*Plus utility to log in as the SIEBEL table owner to the server
database and execute a statement similar to the following:

desc CX_AHA_DOC;

If we see the column listing for the CX_AHA_DOC table then the schema changes
have been successfully applied.

Summary
In this chapter, we learned to understand the object types that define the data layer
in the Siebel Repository, namely tables, columns, indexes, and user keys. In addition,
we discussed the implications of changes to the physical schema and that it is
beneficial to use alternative solutions such as preconfigured extension tables
instead of creating custom tables or columns.

Of course, company requirements will exist which that physical schema changes
necessary. In this chapter, we also learned how to create new columns, tables, and
indexes and synchronize the Siebel Repository metadata with the physical schema
of the relational database.

In the next chapter, we will expand on the topic of 1:M extension tables and learn
how to create the necessary business layer objects to support new child entities.

Business Objects and Links
This chapter introduces the concept of Business Objects and Links. Both object
definitions are important members of the Siebel business layer and establish
relationships between business components. In addition, we will learn how to create
child business components based on 1:M extension tables and incorporate them into
business objects.

The chapter is structured as follows:

Understanding business objects and links
Creating child business components on a 1:M extension table
Creating child business components on a standalone table
Creating links
Configuring business objects

Understanding business objects and
links
In order to understand business objects and links and how these object types support
relationships between business components, we can investigate views in a Siebel
application using the About View option in the Help menu.

For example, we can navigate to the Contacts Screen and drill down on a contact's
last name to open the Contact Detail View, which shows all activities associated to
the selected person.

•

•

•

•

•

Business Objects and Links

[180]

We then select the About View command in the Help menu of the Siebel application
to open a dialog similar to the following screenshot:

Besides the technical names of the screen (Contacts Screen) and view (Contact
Detail View) that is currently open, the dialog also conveys to us the name of the
business object referenced by the view (Contact). The applet list uses indexes,
in square brackets, allowing us to easily identify which business component is
referenced by what applet. In the previous example, the Contact Form Applet
references the Contact business component and the Contact Activity List Applet
references the Action business component.

Closer inspection of this view's functionality reveals that the activity list only
displays activity records that are associated to the contact displayed in the contact
form on top of the view. This can be verified by using the Next Record or Previous
Record button in the form applet to display different contact records. When we click
the New button in the activity list, a new activity record is created and automatically
associated to the contact displayed in the form on top of the view.

The two entities—contact and activity—implemented as the Contact and Action
business components, are arranged in a parent—child relationship that can be
visualized as follows:

A person—represented by the Contact business component—can be associated with
many activities, represented by the Action business component.

Chapter 9

[181]

We can use the information collected with the About View dialog to continue our
examination in Siebel Tools. The following procedure describes how to examine the
Contact business object in Siebel Tools:

1. In the Object Explorer, select the Business Object type.
2. In the Object List Editor, query for the Contact business object.
3. In the Object Explorer, expand the Business Object Type and select the

Business Object Component type.
4. In the Business Object Components list, query for the Action business

component.
5. Observe that the Link property references a link object definition named

Contact/Account.

The following screenshot shows the result of the preceding query:

A business object can be described by the following characteristics:

A business object is a list of business components
The relationship between business components in a business object are
established by links
A business object has a primary business component, which is the parent for
all other linked business components
The primary business component does not use a link

The relational hierarchy of a business object's business components can be visualized
in Siebel Tools by right-clicking the business object and selecting View Details.
The resulting diagram may be difficult to view when a large number of business
components is involved.

•

•

•

•

Business Objects and Links

[182]

The following screenshot shows a diagram for the Account - ESP business object
generated by the View Details functionality of Siebel Tools:

The connection of business components by means of links and the hierarchical
parent—child relationships are clearly visible in the previous diagram.

Link object definitions
In the preceding example, we investigated the Contact business object and how the
Contact business component is linked to the Action business component by means of
a link object definition named Contact/Action.

In the following section we will learn more about links by investigating the Contact/
Action link more closely.

Did you know?
Siebel Tools supports a naming convention for links by using the name of
the parent (upper) business component for the first part of the name and
the name of the child (lower) business component for the second part of the
name. The names are separated by a slash (/). This naming convention is
automatically applied when we create new link definitions.
It is however not enforced; developers can rename the link once it is created.

Chapter 9

[183]

The following procedure describes how to review the properties for a link object
definition in Siebel Tools:

1. In the Object Explorer, select the Link object type.
2. In the Object List Editor, query for the Contact/Action link.
3. Open the Properties window to inspect the properties of the link.

The following screenshot shows a portion of the Properties window for the Contact/
Action link:

The following table describes the most important properties of the Link object type:

Property Description
Parent Business Component The name of the business component that is the parent in

the relationship defined by the link.
Child Business Component The name of the business component that acts as the child

in the relationship defined by the link.
Inter Table The name of the intersection table used for the

relationship.
Important: If this property is populated, the relationship
defined by the link is a many-to-many (M:M) relationship.
If not, the relationship is a one-to-many (1:M) relationship.

Inter Parent Column The column in the intersection table that stores the
primary key (ROW_ID) of the parent record. Only
required for M:M links.

Inter Child Column The column in the intersection table that stores the
primary key (ROW_ID) of the child record. Only required
for M:M links.

Business Objects and Links

[184]

Property Description
Source Field In the case of a 1:M relationship, this property defines the

name of the field in the parent business component that
serves as the primary key. If this property is empty, the Id
field (which maps to the ROW_ID column) is used.

Destination Field In the case of a 1:M relationship, this property defines the
name of the field in the child business component that
maps to the foreign key column.

Cascade Delete For 1:M links, this property controls what happens to child
records when the parent record is deleted.

A value of None indicates that child records remain
untouched when the parent record is deleted.

A value of Clear enforces that the foreign key column of
the child records is set to NULL.

A value of Delete means that child records are deleted
when the parent record is deleted.

Driven by additional properties, links also allow us to control the filtering and
sorting of child records. Similar to business components, links also have properties
such as No Insert, which controls whether it is allowed to create a child record
through the link or not.

Creating a child business component on
a 1:M extension table
When business requirements dictate the creation of new child entities, developers
can rely on 1:M extension tables in order to avoid modifications of the physical
schema. 1:M extension tables have been described in the previous chapter. In the
following case study example, we will practice the creation of a new child business
component based on a 1:M extension table. Later in this chapter, we will learn how
to create a new link and insert the new business component in an existing business
object using the new link.

Chapter 9

[185]

Case study example: Creating a custom child
business component
As indicated in the description of the Sales—Update Customer business process in
Chapter 3, Case Study Introduction, AHA wants to store the date, employee, product,
and the customer response of each product offering to a customer. The AHA
business analyst team has identified the preconfigured S_ORG_EXT_XM table
as the best place to store this data.

The analyst team has created the following table to describe the new business
component definition named AHA Customer Offer and its field mappings:

Field Column Remarks
Account Id PAR_ROW_ID The foreign key field must map to

PAR_ROW_ID.
Type TYPE Set the pre default value to AHA_

CUST_OFFER.
Set this as a required field.

Identifier NAME Set the pre default value to Field:
'Id' to ensure uniqueness of the user
key.
Set this as a required field.

Offer Date (Empty) This is a calculated field.
Set Calculated Value to [Created].
Set the Data Type property to DTYPE_
UTCDATETIME.

User Login
Name

S_USER.LOGIN (Joined) Create a join to S_USER using the
Created By system field.

Product Id ATTRIB_03 Used to store the ROW_ID of the
product being offered.

Product
Name

S_PROD_INT.NAME (Joined) Displays the name of the product being
offered.
Create a join to S_PROD_INT using
the Product Id field.
Create a pick list that only shows
products marked as orderable.
A new read-only pick applet must be
created on top of the Internal Product
business component.
(See the following for instructions on
creating pick lists and pick applets).

Business Objects and Links

[186]

Field Column Remarks
Response
Type

ATTRIB_04 Used to store the type of the customer's
response to the offer.
Create a new static pick list with the
following values:
Purchase
Tentative
Positive
Negative
(See the following for instructions on
creating pick lists.)

Response
Text

ATTRIB_47 Allows 255 characters.

The pick list definitions referenced in the preceding tables will be
implemented and explained in detail in the next chapter.

Business Components that are based on 1:M extension tables must provide a default
value for the Type field. This ensures that every new record created by this business
component has a value in the TYPE column of the 1:M extension table by which it
can be identified as a member of the entity represented by the business component.

In order to retrieve only records of the type associated with the new business
component, we must set its Search Specification property to a value similar to
the following:

[Type]="AHA_CUST_OFFER"

This search expression ensures that only records that have a value of AHA_CUST_
OFFER in the TYPE column are retrieved by the new business component.

The following procedure describes how to create a new child business component
based on a 1:M extension table using the New Business Component wizard:

1. Create and lock a new project named AHA Business Components if necessary.
2. Click the New button in the Edit toolbar to open the New Object Wizards

selection dialog.
3. In the General tab, double-click the BusComp icon to start the New Business

Component wizard.

Chapter 9

[187]

4. Provide the following values in the first wizard page:
Project: AHA Business Components
Name: AHA Customer Offer
Table: S_ORG_EXT_XM

5. Click Next.
6. In the Single Value Fields page, select PAR_ROW_ID in the column

drop-down list.
7. Enter Account Id in the name field below the drop-down list (overwrite the

default name).
8. Click the Add button to write the new field definition to the list at the bottom

of the page.
9. Repeat steps 6 to 8 for each non-joined and non-calculated field in the

preceding table. The following screenshot shows the wizard page before
adding the last column mapping:

10. Click the Finish button.
11. The new business component definition is created and Siebel Tools navigates

to it automatically.

°

°

°

Business Objects and Links

[188]

12. In the Properties window for the new business component make the
following entries:

Search Specification: [Type]="AHA_CUST_OFFER"
Comments: Created for AHA prototype to store customer offers
No Delete: TRUE

Note: This prevents deletion of the offer history.

13. Navigate to the Type field and set the Pre Default Value property to
AHA_CUST_OFFER.

The value in the Pre Default Value property of the
Type field must match the quoted string in the business
component's Search Specification property exactly (case
is important). It is therefore recommendable to copy and
paste this value rather than typing it twice.

14. Set the Required property for the Type field to TRUE.
15. Navigate to the Identifier field and set the Pre Default Value property to

Field: 'Id'.

This ensures that the user key in the S_ORG_EXT_XM
table is satisfied.

16. Set the Required property for the Identifier field to TRUE.
17. Create a new calculated field with the following values:

Name: Offer Date
Calculated: TRUE
Calculated Value: [Created]

Now that we have created the new child business component definition and
the majority of fields, we can use the following procedure as a guide to create
the joined fields as requested by the AHA business analyst team. As we have
already discussed joined fields in a previous chapter, the instructions in the
procedure are less explicit.

°

°

°

°

°

°

Chapter 9

[189]

18. Create two new Join object definitions for the AHA Customer Offer business
component as per the following table:

Table Alias Outer Join Flag
S_USER Created By - S_USER Checked
S_PROD_INT Product - S_PROD_INT Checked

Did you know?
It is recommendable to use the Alias property of a Join object
definition to indicate the usage and the joined table name. This
allows for easier identification of the table from the Fields list.
Setting the Outer Join Flag to TRUE ensures that records are
fetched for the business component regardless of the existence
of a corresponding record in the joined table.

19. For the Created By - S_USER join object definition, create a new Join
Specification definition with the following properties:

Name: Created By
Source Field: Created By
Destination Column: PAR_ROW_ID

Because the S_USER table is an extension table, we
should use PAR_ROW_ID instead of ROW_ID as the
destination column. This ensures data integrity.

20. For the Product - S_PROD_INT join object definition, create a new Join
Specification definition with the following properties:

Name: Product Id
Source Field: Product Id
Destination Column: ROW_ID

21. Create two new joined Field definitions for the AHA Customer Offer
business component as per the following table:

Name Join Column
User Login Name Created By - S_USER LOGIN
Product Name Product - S_PROD_INT NAME

°

°

°

°

°

°

Business Objects and Links

[190]

22. Right-click the AHA Customer Offer business component and select Validate
from the context menu.

23. Click the Start button to initialize the validation.
24. Observe the status bar of the Validate dialog. After a few seconds it should

indicate Total tests failed: 0. If any errors or warnings appear in the dialog,
click each of them to facilitate reading the message in the Details text box.
All configurations leading to errors should be corrected and the validation
process should be repeated until no errors are reported.

25. Close the Validate dialog.
26. Compile the AHA Customer Offer business component. This finalizes the

definition of a new child business component based on a preconfigured 1:M
extension table.

As indicated previously, the required Pick List and Pick Map object definitions
for the Response Type and Product Name fields will be implemented in the
next chapter.

A Siebel Tools archive file (AHA Customer Offer BC.sif) is available in this chapter's
code file. The file represents the AHA Customer Offer business component after the
changes made in the previous section.

We must also create a new list applet for the AHA Customer Offer business
component. Please refer to the instructions in Chapter 5, Creating and Configuring
Applets to create an applet with the following characteristics:

Project: AHA User Interface
Name: AHA Customer Offer List Applet
Title: Customer Offers
Business Component: AHA Customer Offer
Upgrade Behavior: Preserve
Web Templates: Edit List only using the Applet List (Base/EditList)
template

Columns: Offer Date, Product Name, Response Type, Response Text,
User Login Name

For the Response Text list column, set the following properties:

HTML Type: Text Area
Show Popup: TRUE

Save all changes and compile the AHA Customer Offer List Applet.

•

•

•

•

•

•

•

•

•

Chapter 9

[191]

A Siebel Tools archive file (AHA Customer Offer List Applet.sif) is available in
this chapter's code file. The file represents the AHA Customer Offer List Applet after
the changes made in the preceding section.

Case study example: Creating child business
components on a standalone table
The following procedure extends the case study example of Chapter 8, The Data Layer
where we created the CX_AHA_DOC table in order to allow the unified display of
all documents such as quotes, opportunities, and campaign responses of a customer
in a single list.

The AHA technical architecture team has provided a planning document for the new
AHA Customer Documents business component with the following fields (mapping
to the CX_AHA_DOC base table):

Field Column Remarks
Account Id ACCOUNT_ID The foreign key to the document's parent

account.
Account Name S_ORG_EXT.NAME Uses Join to S_ORG_EXT. Use Account

Id for Join Specification.
Document Id DOC_ID The unique key of the document.
Document Type DOC_TYPE The type of the document such as Quote.
Document Status DOC_STATUS The status of the document such as

Pending.
Responsible User Id DOC_USER_ID Foreign key to responsible user.
Responsible User
Login Name

S_USER.LOGIN Uses Join to S_USER. Use Responsible
User Id for Join Specification.

Add the dynamic pick list PickList Login
Name.

Verified Flag DOC_VER_FLG A flag to indicate whether the document
has been verified by the user.
Set the Post Default Value property to N.

Pick lists will be covered in greater detail in
Chapter 10, Pick Lists.

Please refer to the previous section for detailed instructions on how to create a new
business component using the New Business Component wizard.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Business Objects and Links

[192]

In addition to the AHA Customer Documents business component, we should also
create a new list applet named AHA Customer Documents List Applet. Please refer to
Chapter 5 for detailed instructions how to create list applets. To fine-tune the applet
we can specify the Employee Notification Pick Applet in the Pick Applet property
for the Responsible User Login Name list column and set the HTML Icon Map
property for the Verified Flag list column to CHECK.

Siebel Tools archive files (AHA Customer Documents BC.sif and AHA Customer
Documents List Applet.sif) are available in this chapter's code file. The files
represent the AHA Customer Documents business component and the AHA
Customer Documents List Applet after the changes made in the preceding section.

Case study example: Creating links
Continuing with the case study example, we must now ensure that the Siebel
application is able to link the Account business component with the new AHA
Customer Offer business component in a 1:M relationship.

The following procedure describes the steps necessary to create a new link object
definition to support this relationship:

1. In the Object Explorer, select the Link object type.
2. In the Object List Editor, create a new record and enter the following

properties:
Project: AHA Business Components
Parent Business Component: Account
Child Business Component: AHA Customer Offer
Source Field: Id
Destination Field: Account Id
Comments: Created for AHA Prototype

3. Observe that the Name property is automatically populated with Account/
AHA Customer Offer.

4. Step off the record to save the new link.
5. Compile the Account/AHA Customer Offer link.
6. Repeat steps 1 to 5 to create a new link between the Account and the AHA

Customer Documents business component.
7. Repeat steps 1 to 5 to create a new link between the Account and the

Audit Trail Item 2 business component, using the Record Id field as the
Destination field.

°

°

°

°

°

°

Chapter 9

[193]

These three new link definitions support the case study
requirements described in Chapter 3.

A Siebel Tools archive file (Chapter 9 Links.sif) is available in this chapter's
code file. The file represents the new link object definitions created in the
preceding section.

Case study example: Configuring
business objects
We can now use the links created in the previous section to augment the Account
business object. By doing so we will be able to place applets based on the child
business components created in this chapter in any view that is based on the
Account business object.

The following procedure describes how to add a business component and link to an
existing business object:

1. In the Object Explorer, select the Business Object type.
2. In the Object List Editor, query for the Account business object.
3. Check out or lock the Account business object if necessary.
4. In the Object Explorer, expand the Business Object type and select the

Business Object Component type.
5. In the Business Object Components list, create a new record and provide the

following property values:
Bus Comp: AHA Customer Offer
Link: Account/AHA Customer Offer
Comments: Created for AHA Protoype

6. Repeat step 5 for the AHA Customer Documents business component and
the Account/AHA Customer Documents link.

7. Repeat step 5 for the Audit Trail Item 2 and the Account/Audit Trail
Item 2 link.

8. Compile the Account business object.

°

°

°

Business Objects and Links

[194]

We will describe how to test the configurations made in this
chapter's case study examples in upcoming chapters.

A Siebel Tools archive file (Account BO.sif) is available in this chapter's code
file. The file represents the Account business object after the changes made in the
previous section.

Summary
While business components provide the complete set of business logic for a given
business entity, business objects group them together in hierarchical relationships
by establishing the context of a primary business component and using link object
definitions to glue one parent and one child business component together.

So-called 1:M links use foreign key—primary key relationships. M:M links reference
intersection tables to support the storage of related primary keys.

When we wish to establish new child business components for existing parent
business components, we must first create the new child business component,
then a new 1:M link definition, and finally add the new child business component
to the business object where the parent business component is the primary
business component.

In the next chapter, we will discuss the concept of static and dynamic pick lists.

Pick Lists
Pick Lists ensure that end users can only select valid values for a field. This is a major
boost for data quality and usability. It is important for developers to understand how
pick lists work in Siebel CRM and how they can be configured.

In this chapter, we will learn the following:

Understanding pick lists
Creating a new static pick list for an existing field
Administering the List of Values table
Creating dynamic pick lists
Creating pick applets
Constrained and hierarchical pick lists

Understanding pick lists
Siebel CRM supports two types of pick lists—static and dynamic. The preconfigured
applications are replete with examples for both types. In the following, we will use
the Opportunity entity as an example to examine static and dynamic pick lists.

•
•
•
•
•
•

Pick Lists

[196]

Static pick lists
A static pick list is rendered in the user interface (UI) as a simple one column
drop-down box. The following screenshot shows the Lead Quality pick list in
the More Info form applet for opportunities:

Static pick lists like the previous one are typically bounded, that means that
end users are only allowed to enter values provided by the drop-down list. An
unbounded pick list allows the end user to enter values which are not displayed in
the pick list. The Probability field of an opportunity is an example for an unbounded
pick list in preconfigured Siebel CRM applications.

On the business component level, we find that each field that exposes the behavior
described previously has the following characteristics:

The field references a Pick List object definition
The field has one or more Pick Map child records

The following Siebel Tools screenshot shows these characteristics for the Quality
field of the Opportunity business component. This field is exposed as the Lead
Quality drop-down box in the previous example:

The Picklist property of the Quality field is set to PickList Quality, the name
of a Picklist object definition, and there is one entry in the Pick Maps list for the
Quality field.

A pick map defines the list of fields in the pick business component, defined by the
pick list object definition, and fields in the originating business component to which
the values are copied when the user makes the selection in the pick list.

•
•

Chapter 10

[197]

The majority of static pick lists retrieve their values from a single table—S_LST_OF_
VAL, also known as List of Values—by means of a specialized business component
named PickList Generic. The administration of data in the List of Values table will
be discussed in detail later in this chapter.

The pick list object type
The Picklist object type serves to define the behavior of the pick list at runtime as
well as the pick business component that provides the data displayed in the pick
list. We can imagine a picklist object definition as a data provider for the field it is
associated with. A picklist references a business component from which it pulls
data. In addition, a picklist object definition can define additional filtering and
sorting behavior.

The following table describes the most important properties for the Picklist
object type:

Property Description
Business
Component

The name of the business component that provides the data for the
pick list.

Bounded When set to TRUE, only values from the pick list can be selected. When
set to FALSE, the pick list accepts other values as well.

Static When set to TRUE, the pick list is rendered as a drop-down list and
the values are typically provided by the PickList Generic or PickList
Hierarchical business component that access the Siebel List of Values
table (S_LST_OF_VAL).
When set to FALSE, the values in the pick list typically come from a
commonly used business component such as Account. Pick lists with a
value of FALSE in the Static property are called dynamic pick lists.

Type Field The name of a field in the pick list's business component that is used to
retrieve a subset of data. For static pick lists that use the PickList Generic
or PickList Hierarchical business components, this property is typically set
to Type.

Type Value Used in conjunction with the Type Field property. When both properties
are set, a simple filter expression (Field = Value) is formed. For static
pick lists this property contains the name of the List of Values type to
distinguish a list of values for a single drop-down box.

Search
Specification

Developers can use the Siebel Query Language to create an optional
search expression to filter the data retrieved from the pick list's business
component.

Sort
Specification

Can be used to define the sorting of data retrieved from the pick list's
business component.

Pick Lists

[198]

Pick maps
Every field that references a Picklist object definition must also provide a pick map.
Pick maps are implemented as child object definitions for the respective field. Pick
map entries are used by the runtime engine for the following purposes:

Determine the list of fields in the pick business component and the
corresponding fields in the originating business components to copy the
data to when the user makes a selection (also known as copy pick maps).
Determine additional filters for the values in the pick list (also known as
constrained pick maps).
Use a field in the originating business component to determine if the copy or
filter should be executed. This is implemented as the pick map's child entity
named Pick Map UpdOnlyIfNull (update only if null). A pick map that has
one or more of these child entries will only be executed when the fields in the
UpdOnlyIfNull list have a NULL value.

In the following sections we will provide examples of both types (copy and
constrain) of pick map entries.

Dynamic pick lists
Dynamic pick lists can be easily recognized in the Siebel CRM user interface by the
typical select icon with one dot and a check mark. When end users click this icon,
officially named Select button, a pick applet is opened in a pop-up window to
provide a more convenient way to search and select values.

The following screenshot shows the Account field in the Opportunity form applet
and the pick applet for Accounts:

The following facts distinguish dynamic from static pick lists:

End users can typically add entries to dynamic pick lists, hence the name
dynamic.
Applet controls or list columns for dynamic pick list fields must reference a
pick applet.

•

•

•

•

•

Chapter 10

[199]

Dynamic pick lists typically retrieve data from normal business components
(as opposed to the PickList Generic business component for static pick lists).

Did you know?
Pick lists allow for automatic completion of values entered by the end
user. When an end user enters for example 1 in the Lead Quality field of
an opportunity and then uses the Tab key to go to the next field, the value
is automatically completed to 1-Excellent because there is only one value
in the list that starts with 1.
In dynamic pick lists, end users can use wildcards such as the asterisk
(*) symbol when they type in values. For example, typing Hon*S* in the
Account field of an Opportunity and leaving the field with the Tab key
opens the Account Pick Applet displaying only accounts whose names
start with Hon and contain an uppercase S.

Repository object types for pick lists
The following diagram describes the object types and their relationships that define
the functionality around pick lists in the Siebel Repository:

We can summarize the functionality as follows:

The controls or list columns in an applet reference fields in the originating
business component
For dynamic pick lists, the applet's controls or list columns also reference a
pick applet

•

•

•

Pick Lists

[200]

The field in the originating business component references a Picklist object
definition and has at least one Pick Map entry
The Picklist references the pick business component that provides data
A pick map entry defines the copy path from a pick list field to a field in the
originating business component

Case study example: Creating a new
static pick list for an existing field
Developers are supported in the task of creating pick lists by the Pick List Wizard in
Siebel Tools. In the following case study example, we will use this wizard to create a
new static pick list for a field.

In Chapter 9, Business Objects and Links, we created a new child business component
named AHA Customer Offer. As indicated in the field level requirements,
a new static pick list should be created for the Response Type field with the
following values:

Purchase
Tentative
Positive
Negative

The following procedure describes how to create a new static pick list for a business
component field using the Pick List Wizard:

1. Navigate to the AHA Customer Offer business component.
2. Check out or lock the business component if necessary.
3. In the Object Explorer, expand the Business Component type and select the

Field type.
4. In the Fields list, query for the Response Type field.
5. Right-click the Response Type field and select Add Pick List…
6. In the Pick List Type page of the Pick List Wizard select Static.
7. Click Next.
8. In the Pick List Definition page select Create new Pick List.
9. Click Next.
10. Provide a name for the new Pick List, for example AHA Customer Response

Pick List.

•

•
•

•
•
•
•

Chapter 10

[201]

11. Select Create new List of Values.
12. Click Next.
13. In the List of Values page, enter a name for the new List of Values type, for

example AHA_CUST_RESPONSE.
14. In the Enter a value text box type Purchase.
15. Click the Enter button in the dialog to add Purchase to the Current values

list box.
16. Repeat steps 13 and 14 for the values Tentative, Positive, and Negative.

The following screenshot shows the List of Values page of the Pick List
Wizard with all four values entered:

17. Click Next.
18. In the Pick List Definition page enter a comment such as Created for AHA

prototype in the second text box.
19. Check the Bounded Pick List checkbox.
20. Click Next.
21. Click Finish.
22. Compile the AHA Customer Offer business component.
23. In the Object Explorer, select the Pick List type.
24. In the Object List Editor, query for the AHA Customer Response Pick List.
25. Compile the AHA Customer Response Pick List.

Pick Lists

[202]

Verifying object definitions created by the
pick list wizard
The following steps are optional but should be executed in order to verify that the
wizard has generated all object definitions and List of Values data as intended:

1. Navigate to the AHA Customer Offer business component.
2. In the Fields list, execute the query for the Response Type field again to

refresh the list.
3. Verify that the Response Type field now references the AHA Customer

Response Pick List in the PickList property.
4. In the Object Explorer, expand the Field type and select the Pick Map type.
5. Verify that a new pick map entry has been created by the wizard that copies

the Value field of the pick business component to the Response Type field.
6. Navigate to the AHA Customer Response Pick List.
7. Verify that the new pick list object definition exists and compare it with the

following screenshot. Note the Static and Bounded flags and the Type Value
referencing the type for the entries in the List of Values (LOV) table:

8. In the Screens menu of Siebel Tools, navigate to System Administration |
List of Values.

9. In the List of Values list, query for the AHA_CUST_RESPONSE type.
10. Verify that four entries exist and compare them with the following

screenshot:

Chapter 10

[203]

In summary, we can observe that the Pick List wizard creates and modifies the
following repository metadata objects:

PickList property of the selected field in the originating business component
Pick Map child object definitions for the selected field
Pick list object definition

When executed for static pick lists, the wizard also creates new records in the List of
Values (LOV) table. Data in this table is not part of the Siebel Repository and as such
it can neither be compiled to the SRF file nor checked in to the development server
database to make it available to fellow developers. We have the following options
to synchronize the LOV data (and other non-Repository data) with the development
server database:

Use the Synchronize Database option in the Mobile Web Client (if Siebel
Remote is fully enabled on the development server).
Log in to the server database and manually enter List of Values data (not
recommended).
Create an Application Deployment Manager (ADM) project for LOV data
and deploy it on the development server. Using ADM functionality for
deployment of administrative data such as LOVs is discussed in a separate
chapter of this book.

Administering the list of values table
The data for static pick lists is stored in the S_LST_OF_VAL table as we have
learned previously. The data set for a single pick list is defined by the Type value.
Administrators and developers have two options to administer data in the S_LST_
OF_VAL table:

Use the List of Values list in Siebel Tools
Use the List of Values view in the Siebel Web Client

Both applications allow us to add, modify, or deactivate entries in the List of Values
data pool. In the following example procedure we describe how to undertake these
tasks in the Siebel Web Client. For example purposes we will deactivate the Purchase
entry in the AHA_CUST_RESPONSE type and create a new entry with a value of
Decided to buy:

1. Log in to the Siebel Developer Web Client to the same database that you
used to create the AHA Customer Response Pick List in the previous section.

2. Navigate to the site map.

•
•
•

•

•

•

•
•

Pick Lists

[204]

Hint: Click the globe icon on the toolbar or
press Ctrl+Shift+A

3. Navigate to the Administration - Data screen.
4. Click the hyperlink for the List of Values view.
5. Query for AHA_CUST_RESPONSE in the Type column.
6. Verify that four records are retrieved.
7. Select the Purchase entry and press Ctrl+B to copy the record.

Copying records is a recommended practice to save time
during data entry. However, we must be aware that some
values such as the order sequence are copied as well,
which may not be desirable.

8. In the Display Value column of the new record enter Decided to buy.
9. Press Ctrl+S to save the record. Note that the Language-Independent Code

column is set to Decided to buy automatically.
10. Uncheck the Active flag for the Purchase entry and save the record.
11. Click the Clear Cache button on top of the list to reload the application's

LOV cache.

The following screenshot shows the List of Values administration view after the
changes described in the preceding procedure:

An ADM import XML file (Chapter_10_LOV.xml) is provided in this chapter's code
file. This file represents the AHA_CUST_RESPONSE LOV type after the changes in
the previous section.

Chapter 10

[205]

The following table describes the most important columns in the List of Values
administration view:

Column Description
Type Records for a single pick list are combined by the same type value.

LOV Types are administered in the S_LST_OF_VAL table itself and
have LOV_TYPE as the type value.
To create a new LOV type, we must therefore create a new LOV
entry with LOV_TYPE as the type value.

Display Value The value displayed to the end user. When the Multilingual List of
Values (MLOV) feature is implemented, the Language Name field
identifies the language for the display value.
Note: Administration of MLOV data is discussed in the book Oracle
Siebel CRM 8 Installation and Management.

Language-
Independent Code

The value stored in the database. When MLOV is implemented, this
value is used to look up the language-dependent display value in the
user's UI language.

Order Used to specify the sort order for the values. When LOV entries
for the same type have the same order number, they are sorted
alphabetically.

Active When the Active flag is checked, the entry is displayed in the pick
list. When the Active flag is unchecked, the entry is not displayed in
the pick list.

Language Name The name of the language for multilingual List of Values entries.
Parent LIC Used to create hierarchical pick lists (discussed in a later section of

this chapter). LIC is short for Language-Independent Code.
Translate When this flag is checked, the LOV entry can be translated into

additional languages. Used by Oracle engineering to indicate
that references to the LOV entry are language agnostic (using the
LookupValue function rather than using hardcoded field values).

Multilingual When this flag is checked, the LOV entry has been configured for
multilingual (MLOV) behavior. This means that the application will
use the user's application language to look up the display value.

Replication Level When set to All (default), the entry is synchronized with mobile
clients.

Low, High Used to provide exact representations of data ranges for special
purposes such as data analysis. Example: The display value of >
100M for the Account Revenue dropdown has a High value of
100000000, which can be better used for comparison in analytical
scenarios.

Pick Lists

[206]

Case study example: Creating dynamic
pick lists
The process of creating dynamic pick lists is similar to that of creating static pick
lists. The major exceptions are that dynamic pick lists reference commonly used
business components such as Account or Internal Product and that a pick applet
must be specified in the applet control or list column.

As indicated in the previous chapter, the solution architect team of AHA has defined
the following requirements for the Product Name field of the AHA Customer Offer
business component:

Create a new pick list that only displays products marked as orderable
Create a new read-only pick applet

We will describe example procedures for these tasks in this and the following section.

The following procedure describes how to create a new dynamic pick list for the
Product Name field of the AHA Customer Offer business component:

1. Navigate to the AHA Customer Offer business component.
2. In the Object Explorer, expand the Business Component type and select the

Field type.
3. In the Fields list, query for the Product Name field.
4. Right-click the Product Name field and select Add Pick List…
5. In the Pick List Type page of the Pick List Wizard select Dynamic.
6. Click Next.
7. In the Pick List Definition page select Create new Pick List.
8. Click Next.
9. In the Pick List Definition page enter the following values:

Business Component: Internal Product
Field to sort: Name
Name for the pick list: AHA Orderable Product Pick List
Search Specification: [Orderable]="Y"
Comment: Created for AHA prototype

10. Click Next.

•
•

°
°
°
°
°

Chapter 10

[207]

11. In the Pick List Specifications page, check all flags (No Delete, No Insert,
No Merge, No Update).

12. Click Next.
13. In the Pick Map page, select the Product Name field in the first drop-down

list (originating business component field).
14. Select the Name field in the second drop-down list (pick business

component field).
15. Click the Add button to add the pick map to the list box.
16. Repeat steps 13 to 15 for the Product Id field in the originating business

component and the Id field in the pick business component.
17. Click Next.
18. Click Finish.
19. Compile the AHA Customer Offer business component.
20. Compile the AHA Orderable Product Pick List.

Siebel Tools archive files (AHA Customer Offer BC.sif and Chapter 10 Pick Lists.
sif) are available in this chapter's code file. The files represent the AHA Customer
Offer business component and the new pick list definitions after the changes made in
the above sections.

Case study example: Reusing existing
pick lists
To finalize the work started in Chapter 9 and subsequently fulfill AHA's
requirements, we can use the following procedure to reuse an existing pick list for
the Responsible User Login Name field in the AHA Customer Documents business
component. The AHA technical architect team has identified PickList Login Name as
the pick list definition to reuse:

1. Navigate to the AHA Customer Documents business component.
2. Check out or lock the business component if necessary.
3. Navigate to the Responsible User Login Name field.
4. Right-click the field and select Add Pick List…
5. In the Pick List Type page of the Pick List Wizard select Dynamic.
6. Click Next.
7. In the Pick List Definition page, select Use existing Pick List.

Pick Lists

[208]

8. In the Existing Pick Lists list, select the PickList Login Name pick list.

For easier navigation in the list, you can type the name on the
keyboard (case not required) after clicking inside the list.

9. Click Next.
10. In the Pick Map page, map the following fields from the originating and the

pick business component:
Responsible User Login Name: Login Name
Responsible User Login Id: Id

11. Click Next.
12. Click Finish.
13. Compile the AHA Customer Documents business component.

A Siebel Tools archive file (AHA Customer Documents BC.sif) is available in this
chapter's code file. The file represents the AHA Customer Documents business
component after the changes made in the preceding section.

Case study example: Creating pick
applets
The second requirement stated in the previous case study example is to create a
new pick applet that displays the product data to end users so they can select
one product.

Developers have the following options for pick applets (sorted from least to
most effort):

Reuse existing pick applets based on the same pick business component
Copy an existing pick applet and modify the copy
Create a new pick applet using the Pick Applet wizard

Did you know?
Because the Pick Applet wizard does not place all typical pick applet
controls such as the Find combo boxes on the web layout, these must be
copied from an existing pick applet using the Compare Objects window
in order to avoid placing them on the wrong placeholders.

°
°

•
•
•

Chapter 10

[209]

The following procedure describes how to copy an existing pick applet and modify
the copy. Copying an existing pick applet ensures that all typical pick applet controls
such as the Find functionality are present in the custom pick applet on the correct
placeholders. In the example, we will copy the Product Pick Applet that is used to
select products for an opportunity:

1. Navigate to the Product Pick Applet.
2. Copy the Product Pick Applet by selecting the record and pressing Ctrl+B.
3. Set the following values for the copied applet:

Name: AHA Product Pick Applet
Project: AHA User Interface
Comments: Created for AHA prototype, copy of Product Pick
Applet

4. Right-click the AHA Product Pick Applet and select Edit Web Layout.
5. In the layout editor, select the Part # list column and press Delete to delete it.
6. Repeat step 5 for the Service Length Period column.
7. Save the changes by pressing Ctrl+S.
8. Close the editor window.
9. Compile the AHA Product Pick Applet.

We now have created a new pick applet. In order to invoke the pick applet from
another applet, we must add a reference to the pick applet to another applet's
controls or list columns. In continuing the case study example, the following
procedure describes how to modify the Product Name list column of the AHA
Customer Offer List Applet (created in an earlier chapter) to reference the AHA
Product Pick Applet:

1. Navigate to the AHA Customer Offer List Applet.
2. Navigate to the Product Name list column of the AHA Customer Offer

List Applet.
3. Set the Pick Applet property of the Product Name list column to AHA

Product Pick Applet.
4. Set the Runtime property of the Product Name list column to TRUE.
5. Compile the AHA Customer Offer List Applet.

°
°
°

Pick Lists

[210]

Did you know?
The Runtime property should always be set to TRUE for controls or
list columns that have specialized behavior such as launching popup
applets or calendar controls at runtime. For example, to ensure that the
calendar control is available in both the High-Interactivity and Standard
Interactivity UI modes, we should set the Runtime property for each date
control to TRUE.

A Siebel Tools archive file (Chapter 10 Applets.sif) is available in this chapter's
code file. The file represents the applet definitions created and modified made in the
previous section.

Case study example: Testing pick list
configurations
In order to test the business layer and applet modifications, we must be able to
view the applets in the Siebel Web Client. In early phases of the project (such as
in this chapter), it may be necessary to create a simple test view that exposes the
modified applets.

The procedure to create and register new views has already been laid out in
Chapter 5, so only brief instructions are given here for creating a test view for the
AHA Customer Offer List Applet and the AHA Customer Documents List Applet:

1. Use the New View wizard to create a view with the following characteristics:
Project: AHA User Interface
Name: AHA UI Test View
Title: Test View
Business Object: Account
Upgrade Behavior: Preserve
Web Template: View Detail
Applets: AHA Customer Profile Form Applet, AHA Customer Offer
List Applet, AHA Customer Documents List Applet
Applet Mode for all list applets: Edit List

2. Arrange the list applets side by side by positioning them on the 50 percent
placeholders on the bottom of the view template.

°
°
°
°
°
°
°

°

Chapter 10

[211]

3. Add the AHA UI Test View to the Accounts screen and register it with the
AHA Prototype responsibility.

4. Use the test view to verify that the following pick lists work as expected:
Product Name (dynamic) and Response Type (static) on the
Customer Offers list
Responsible Employee Login Name (dynamic) on the Customer
Documents list

A Siebel Tools archive file (Chapter 10 Test View.sif) is available in this chapter's
code file. The file represents the view and screen definitions as created or modified in
the above section.

ADM import XML files (Chapter_10_View.xml and Chapter_10_Responsibility.
xml) are provided in this chapter's code file. These files represent the AHA UI Test
View and the AHA Prototype Responsibility type after the changes in the previous
section. The Chapter_10_View.xml file must be imported first.

Constrained and hierarchical pick lists
Because of the fact that pick lists are based on the feature set of business components,
developers can limit the record set visible to the end user in the pick list. This
technique is called constrained pick lists and applies to static and dynamic pick
lists alike.

Hierarchical pick lists are a special type of static pick lists where the end user has to
follow a defined sequence of selection. For example, the area field of a service request
has to be filled before the subarea field. The subarea dropdown will only display
values suitable for the selected area.

Filtering the record set for a pick list can be required for various reasons. Usability
and data quality are among the typical reasons. Another reason can be data security.

We have the following options to filter the record set for a pick list:

Constrained pick maps (discussed in this section)
Specify a search specification on the pick business component, the pick list,
or the pick applet (discussed earlier in this chapter)
Siebel State Model (not discussed in this book)

°

°

•
•

•

Pick Lists

[212]

Exploring a constrained dynamic pick list
We can find many examples of constrained dynamic pick lists in the preconfigured
Siebel CRM applications. For instance, we can navigate to the Agreements screen
and associate an agreement with an account. When we then click the select button
in the Last Name field to select a contact person for the agreement, the pick list only
displays contacts that are associated with the account.

The following screenshot shows this behavior for an agreement record in the Siebel
Sample Database:

This behavior is implemented by declaring a so-called constrained pick map entry. The
pick map for the Contact field in the Agreement business component is displayed in
the following screenshot. Note the Constrain flag for the Account Id field:

Checking the Constrain flag defines that when the pick map is executed, the pick list
will only display records that match the filter criteria. In the previous example, the
pick list will only display records where the value in the Account Id field in the pick
list's business component matches the value in the Account Id field of the Agreement
business component.

Chapter 10

[213]

Exploring hierarchical static pick lists
The preconfigured Siebel CRM applications provide useful examples of hierarchical
static pick lists. For instance, we can log in to a Siebel Demo application, using
the sample database, and navigate to the Service Request screen. There we can
investigate the behavior of the Type, Area, and Sub Area drop-down boxes in
the form applets for service requests. When we select Automotive in the Type
drop-down list, we can only select values related to the automotive industry in the
Area drop-down list, for example Engine. The Sub Area drop-down list will then
only display values related to engine problems such as Check Engine Light.

We can also observe that when we change a field in a group of hierarchical pick lists,
the fields that are below that field in the hierarchy are emptied automatically.

When we investigate the fields behind these three drop-down lists in the Service
Request business component we can learn how multi-level hierarchical pick lists
work. The following table describes the fields involved in our example:

Applet
Display
Name

Field Constrain Pick
Map Fields

Picklist LOV Type of
Pick list

Pick
Business
Component

Type INS
Product

(None) INS PickList
SR Product

SR_AREA PickList
Hierarchical

Area INS Area Parent = INS
Product

INS PickList
SR Area

SR_AREA PickList
Hierarchical

Sub Area INS Sub-
Area

Parent
INT = INS
CurrentArea

INS
PickList SR
Hierarchical
Sub-Area

SR_AREA PickList
Hierarchical
Sub-Area

The main characteristics of hierarchical pick lists can be described as follows:

They share the same List of Values (LOV) type.
They use the PickList Hierarchical business component, or a copy thereof,
which uses a self join to define a Parent field. This field is labeled Parent LIC
in the List of Values administration view.
The pick map for any but the first field in the hierarchy contains one
constrained entry that matches the current entry of the upper level to the
parent of the current level.
The List of Values entries for the type, SR_AREA in the preceding example,
use the Parent LIC field to define which hierarchy level they belong to.

•
•

•

•

Pick Lists

[214]

The following screenshot shows the List of Values administration view with the
three values for the service request's type, area, and sub area that we used in the
previous example:

As we can see, the Engine entry defines Automotive as its parent and the Check Engine
Light entry defines Automotive Engine as its parent.

Summary
Static and dynamic pick lists ensure that high levels of usability and data quality can
be easily achieved in Siebel CRM applications.

Simple drop-down boxes are implemented as static pick lists. The values for these
pick lists are administered in a central List of Values table.

Relationships between entities, such as the account for an agreement, are supported
by dynamic pick lists and pick applets, which allow the user to search and modify
the data set.

Pick maps define the values to copy between the pick and the originating business
components as well as the rules to constrain the entries in the pick list.

Finally, pick lists can be organized hierarchically to support multi-level selections.

In the next chapter, we will learn how to configure multi value fields.

Multi Value Fields
Multi value fields are widely used in Siebel CRM applications and enable end users
to view and edit data relationships such as one-to-many (1:M) or many-to-many
(M:M). Developers must be aware of the technical intricacies of multi value fields
in order to configure them efficiently.

In this chapter we will learn the following:

Understanding Multi Value Fields
Creating many-to-many (M:M) relationships
Creating multi value links
Creating multi value fields
Creating multi value group (MVG) Applets

Understanding multi value fieldsields
As discussed in previous chapters, links connect a parent and a child business
component in a 1:M or M:M relationship. The usual way to display data in such
relationships to the end user is a view with one applet per business component,
displaying the parent record on top and the list of child records below. These views
are also called detail views.

•
•
•
•
•

Multi Value Fields

[216]

The following screenshot shows the Opportunity Detail - Contacts View as an
example of a detail view:

The view displays one opportunity record on top using a form applet and a list of
contact persons associated to the opportunity using a list applet.

When we examine this example further we find the following considerations:

A separate view means additional effort with regard to the administration of
access control and responsibilities
End users may only be interested in the information displayed by the form
applet but the database has been instructed to fetch the contact data as well,
which can impact performance when there are a lot of contact records in the
database
It is impossible to find all opportunities where a selected person, for example
Mr. Castillo, is a member of the contact list

Multi value fields provide a solution for these considerations. With multi value fields
we can implement the following:

A single applet control or list column, instead of an entire view, displaying
the related child records only when the end user clicks the select icon
Minimal performance impact because the data is only fetched from the
databases when the user opens the multi value group applet
The possibility to query for all parent records that have a certain child
record associated

•

•

•

•

•

•

Chapter 11

[217]

Preconfigured Siebel CRM applications often use both mechanisms, detail views and
multi value fields, at the same time. This is the case in our example view. When we
have a closer look at the opportunity form applet on top of the view, we find the Last
Name field, which can be identified as a multi value field because the select icon has
two dots and a checkmark. Clicking this icon opens the so-called multi value group
(MVG) applet associated with the originating applet control or list column. MVG
applets are implemented as list applets in a pop-up browser window. In case of a
M:M relationship, a second list applet, the Associate applet, is rendered on the left
half of the pop-up window. The combination of MVG applet (right) and Associate
applet (left) is called a Shuttle Applet.

The following screenshot shows the Last Name field for the example opportunity
record and the Contacts shuttle applet:

End users can search the list of available contact persons in the associate applet on
the left. Clicking the Add > button associates the selected contact records with the
parent opportunity and displays them in the MVG applet on the right.

End users can also use the multi value field for queries in order to find all parent
records that are associated with a certain child record. In following our above
example, we could click the Query button in the opportunity form applet and enter
Castillo in the Last Name field. When we press the Enter key to execute the query,
the Siebel application issues the necessary SQL statements against the database
to retrieve all opportunity records that have a contact with a last name of
Castillo associated.

Multi Value Fields

[218]

Did you know?
The Siebel Query Language provides the EXISTS() function to query
multi value fields. In Siebel Industry Applications (SIA), any search
term entered in a multi value field is automatically wrapped by the
EXISTS() function.
Developers and administrators can use the EXISTS() function to create
complex search specifications or predefined queries, or generally use the
function when dealing with multi value fields.

The "Primary" concept
When we observe the above screenshots more closely we can see that one record of
the list displayed by the child applets has the Primary flag set to TRUE.

Each standard multi value field in Siebel CRM applications defines a single
primary record. The primary flag has the main purpose of increasing application
performance. The primary record is the only record that needs to be fetched from the
database in order to fill all fields in the parent record. By using a foreign key from
the parent record to the record that is marked as primary in the list of associated child
records, this can be achieved with a single select statement.

Developers who create new multi value fields must understand and use the primary
concept in order to keep the performance impact to an absolute minimum. In the
following sections, we will learn how to create multi value fields, that effectively use
the concept of primary records.

Repository object types behind multi value
fields
To successfully create multi value fields we must understand the object types that
are needed in the Siebel Repository. The following object types are the foundation for
multi value fields:

Link
Multi Value Link
Multi Value Field
Multi Value Group (MVG) and Association List applets

We introduced the concept of the link object type in Chapter 9, Business Objects and
Links, so we do not need to discuss it here. In the following sections, we will discuss
the other object types in the previous list.

•
•
•
•

Chapter 11

[219]

Multi value link
Multi Value Links are child object definitions to business components. They can be
appropriately described as references to business components and the links used
to establish a parent—child relationship from the parent business component to the
child business component.

The Opportunity business component for example uses a multi value link definition
named Contact to establish a connection between itself as a parent and the Contact
business component as a child. The Contact multi value link is used by the Contact
Last Name field to display the last names of the contact persons associated with the
opportunity. The following screenshot shows the relevant portion of the View Detail
window for the Opportunity business component that visualizes this relationship:

The key properties of the multi value link object type can be described as follows:

Property Description
Destination Business
Component

The name of the child business component that the multi value
link refers to.

Destination Link The name of a link that connects the destination business
component (as a child) to a parent business component.

Primary Id Field The name of a field in the multi value link's parent business
component that is used to store the unique identifier (typically the
ROW_ID) of the primary child record.

Auto Primary Controls the way to set the primary flag.
When set to DEFAULT, the first record entered in the multi value
field becomes the primary.
When set to NONE, the end user must manually designate a
primary child record.
SELECTED is only applicable when there are multiple multi value
links for the same destination business component. Selecting one
record as the primary will then also cause the respective record to
become primary in all other multi value link relationships when it
has not yet been set as such.

Popup Update Only When set to TRUE, changes can only be made through the MVG
applet.

Multi Value Fields

[220]

Multi value field
Multi value fields are fields that use a multi value link to retrieve data from
other business components. The Object Explorer window in Siebel Tools allows
distinguishing between Single Value Fields and Multi Value Fields by selecting the
respective type in the hierarchy. When the Field object type is selected, the Object
List Editor displays all fields and we can use the Multi Valued property, set to
TRUE for multi value fields, to distinguish between single and multi value fields.

Did you know?
The term Multi Value Group comes from the fact that a group of multi
value fields typically refers to a single multi value link.

Multi value group (MVG) and association list
applets
To allow end users to efficiently associate child records through a multi value field,
specialized MVG applets are provided. These applets are list applets with additional
controls. They are linked to the originating applet via the MVG Applet property of
the control or list column exposing the multi value field.

In the case of a M:M relationship, an additional list applet is needed to display all
available records. These applets have their type property set to Association List
and are commonly referred to as Assoc applets. They are linked to an MVG applet by
means of the Associate Applet property.

Relationships between repository objects for multi
value fields
The following diagram depicts the relationships between the objects related to multi
value field functionality in the Siebel Repository:

Chapter 11

[221]

From the preceding diagram we can learn the following:

A control or list column that refers to a multi value field in the applet's
business component also references a MVG applet
In case of a M:M relationship, the MVG applet references an associate applet
Both the MVG and associate applet reference the child business component
Multi value fields use a multi value link to establish a connection to a field in
a child business component
Multi value links reference the child business component and define a link
that connects the parent and child business component
In addition, multi value links reference a primary ID field, which acts as the
foreign key to a single record in the child business component

For the sake of readability the above diagram does not depict
intersection tables for M:M relationships.

•

•
•
•

•

•

Multi Value Fields

[222]

Case study example: Creating multi value
fields
As indicated in Chapter 3, AHA requires that the current 1:M relationship between
customer data and public notes should be changed to M:M. The AHA technical
architecture team has identified the following modifications as necessary to
implement this requirement:

Creating a new intersection table between S_NOTE and S_PARTY
Creating a new M:M link between the Account and Note business
component
Creating a new multi value link in the Account business component
Creating new multi value fields in the Account business component
Creating a new MVG and Association List applet
Modifying the AHA Account Profile Form applet and adding a new
Notes control

In the following sections, we will describe the necessary developer procedures
in detail.

Creating a new intersection table
Because the process of creating new tables has already been discussed in Chapter 8,
we will not repeat this content here.

Please refer to Chapter 8, The Data Layer for the exact step-by-step description to
create a new table. It is recommendable to use the New Table wizard to create a
table with the following characteristics:

Name: CX_AHA_PTY_NOTE
Project: AHA Tables
Type: Intersection Table
First parent table: S_PARTY
Foreign key column to first parent table: PARTY_ID
Second parent table: S_NOTE
Foreign key column to second parent table: NOTE_ID
Comments: Created for AHA prototype

The table must be applied and compiled.

•
•

•
•
•
•

•
•
•
•
•
•
•
•

Chapter 11

[223]

In order to support the primary concept, we must also create a new foreign
key column to S_NOTE in the S_PARTY table. The new column should have the
following characteristics:

Name: X_AHA_PR_NOTE_ID
Foreign Key Table: S_NOTE
Physical Type: Varchar
Length: 15
Comments: Created for AHA prototype

Changes to the S_PARTY table must be applied and compiled.

Extending the S_PARTY table might not be the best solution when
there are large volumes of data stored in the Siebel database. The AHA
technical architecture team has indicated that this is not the case for AHA.

A Siebel Tools archive file (Chapter 11 Tables.sif) is provided with this chapter's
code file. The file represents the new intersection table and modified S_PARTY table
after the modifications in the previous section.

To finalize the procedure, we have to create a new field in the Account business
component that maps to the new foreign key column in the S_PARTY table. The
new field should have the following characteristics:

Name: AHA Primary Note Id
Column: X_AHA_PR_NOTE_ID
Comments: Created for AHA prototype

The Account business component must be compiled after this modification.

Creating a new M:M link
Links are the foundation for multi value fields. We can create a multi value field
on top of any 1:M or M:M link. In Chapter 9, we learned how to use the link object
type to create one-to-many (1:M) relationships between a parent and a child
business component.

In this section, we will learn how to create a M:M link between two business
components in order to support a many-to-many relationship.

•
•
•
•
•

•
•
•

Multi Value Fields

[224]

Because the concept of links and business objects has already been discussed in
detail in Chapter 9, the procedure to create a new M:M link between the Account and
Note business component is less explicit. Please refer to Chapter 9 for step-by-step
instructions on how to create links and child business components.

The new link definition for the case study example should have the following
characteristics:

Project: AHA Business Components
Parent Business Component: Account
Child Business Component: Note
Inter Table: CX_AHA_PTY_NOTE
Inter Parent Column: PARTY_ID
Inter Child Column: NOTE_ID
Comments: Created for AHA prototype

To complete the procedure, we must modify the Account business object and add
the Note business component using the new Account/Note link. Finally, we have to
compile the new Account/Note link and the Account business object.

Creating multi value fields using the MVGvalue fields using the MVG
wizard
Siebel Tools provides a MVG wizard to facilitate the process of creating multi value
fields and multi value links. The following procedure describes how to use the
MVG wizard to create a series of new multi value fields for the preceding case
study example:

1. Check out or lock the Account business component if necessary.
2. Click the New button in the Siebel Tools toolbar.
3. In the New Object Wizards dialog, double-click the MVG wizard.
4. In the Multi Value Group dialog provide the following values:

Project: Account (the project that contains the master
business component)

Master business component: Account
5. Click Next.

•
•
•
•
•
•
•

°

°

Chapter 11

[225]

6. Provide the following values in the dialog:
Detail business component: Note
Name for the multi value link: AHA Note

7. Click Next.
8. In the Direct Links dialog, select the Account/Note link.
9. Click Next.
10. In the Primary ID Field dialog, provide the following values:

Primary ID Field: AHA Primary Note Id
Auto Primary: Default
Use Primary Join: Checked
Check No Match: Unchecked

11. Click Next.
12. In the Multi Value Link dialog, leave all checkboxes unchecked.
13. Click Next.
14. In the Multi Value Fields dialog, select the Note field from the

drop-down list.
15. Modify the name to AHA Note.
16. Click the Add button to add the new multi value field definition to the list on

the bottom of the dialog.
17. Repeat steps 14 and 16 for the following fields:

Skip step 15 and keep the auto-generated names.

Area
Created By Name
Sub-Area
Type

18. Click Next.
19. Click Finish.
20. The MVG Applet wizard is launched automatically because no MVG applet

exists for the new multi value fields.

°
°

°
°
°
°

°
°
°
°

Multi Value Fields

[226]

21. Click Cancel to close the MVG Applet wizard.

We will discuss creating MVG and Association List
applets in the next section.

We have now created the main repository object definitions for a new multi value
link and five new multi value fields on the Account business component. In order
to satisfy the requirements of AHA such as to limit the multi value group to public
notes and provide pick lists in the MVG applet, we must follow this procedure to
fine-tune the object definitions:

1. Navigate to the Account/Note link.
2. Set the following properties:

Search Specification: [Private]<>'Y'
Sort Specification: Created (DESC)

3. Compile the Account/Note link.
4. Navigate to the Multi Value Field list for the Account business component.
5. Set the Picklist property for the following multi value fields as indicated in

the following list:
AHA Note Area: Com PickList Note Area
AHA Note Sub-Area: Com PickList Note Hierarchical Sub-Area
AHA Note Type: Com PickList Note Type (SIA)

6. Compile the Account business component.

A Siebel Tools archive file (Chapter 11 Business Components.sif) is provided
with this chapter's code file. The file represents the Account business component,
the new Account/Note link, and the Account business object after the changes in the
preceding section.

Case study example: Creating multi value
group (MVG) and association list appletspplets
The process of implementing multi value fields requires the creation (or reuse) of
multi value group (MVG) applets and, in the case of M:M relationships, association
list applets. Both applet types are specialized list applets that include extra controls
to provide a higher level of usability to the end user.

°
°

°
°
°

Chapter 11

[227]

Because of the fact that the MVG applet wizard provided by Siebel Tools produces
only a half-done artifact, it is recommendable to copy an existing MVG applet and
modify the copy.

The following procedure describes how to create a new MVG applet for the previous
case study example by copying an existing MVG applet:

1. Navigate to the Industry Mvg Applet.
2. Use the Ctrl+B keyboard shortcut to copy the Industry Mvg Applet.
3. Modify the copy as follows:

Name: AHA Notes Mvg Applet
Project: AHA User Interface
Business Component: Note
Title: Public Notes
Associate Applet: (empty)
Comments: Created for AHA prototype; Copy of Industry Mvg
Applet

4. Right-click the AHA Notes Mvg Applet and select Edit Web Layout.
5. Delete all list columns except the Primary column from the Base

web template.
6. In the Controls/Columns window switch to the Edit List web template and

delete the same list columns as in step 5.
7. Press Ctrl+S to save the changes.
8. Close the Web Layout Editor.
9. In the Object Explorer, expand the Applet type.
10. Expand the List type and select the List Column type.
11. Delete all List Column definitions except the list column named

SSA Primary Field.

Did you know?
To support the Primary feature, MVG applets can expose a
system field named SSA Primary Field. This field is only
available in applets of the MVG type.

12. In the Object Explorer, select the Applet type.
13. Right-click the AHA Notes Mvg Applet and select Edit Web Layout.

°
°
°
°
°
°

Multi Value Fields

[228]

14. Ensure that the Base web template is selected in the Controls/Columns
window.

15. Drag a Text List Column object from the Palettes window to the column
placeholder to the right of the Primary column.

16. In the Properties window set the following properties for the new
list column:

Name: AHA Note Text
Field: Note
Display Name: Note
HTML Type: TextArea
Runtime: TRUE
Show Popup: TRUE

17. Repeat steps 15 and 16 to create four additional list columns with the
following characteristics:

Name Field Display Name Runtime
AHA Created By Created By Name Created By FALSE
AHA Type Type Type TRUE
AHA Area Area Area TRUE
AHA Sub-Area Sub-Area Sub-Area TRUE

18. Press Ctrl+S to save the changes.
19. In the Controls/Columns window switch to the Edit List web template.
20. Drag the five new list columns from the Controls/Columns window to the

column placeholders in the same sequence as in the Base template.
21. Save the changes.
22. Right-click the layout editor and select Preview.
23. Compare the layout with the following screenshot.

24. Close the applet layout editor.

°
°
°
°
°
°

Chapter 11

[229]

Creating association list applets
There is no wizard available in Siebel Tools to create association list applets.
Therefore, it is recommendable to use the copy technique.

The following shortened procedure describes how to create a new association list
applet for the case study example:

1. Copy the Industry Assoc Applet and modify the copy as follows:
Name: AHA Notes Assoc Applet
Project: AHA User Interface
Business Component: Note
Title: Add Notes
Comments: Created for AHA prototype; Copy of Industry Assoc
Applet

2. Delete all list column mappings from both web templates in the applet
layout editor.

3. Delete all list column definitions.
4. Refer to steps 14 to 17 in the previous procedure to create five list columns

for the Edit List web template in the applet layout editor.
5. Refer to steps 19 and 20 in the previous procedure to add the new list

columns to the Query web template.
6. Save all changes and close the applet layout editor.
7. Navigate to the AHA Notes Mvg Applet.
8. Set the Associate Applet property to AHA Notes Assoc Applet.
9. Compile the AHA Notes Mvg Applet and the AHA Notes Assoc Applet.

Creating MVG controls
The final step in the process of creating multi value fields is to modify one or more
applets that are based on the master business component. We can add a new control
(or list column) to the applet as usual with the important additional modification to
reference a MVG applet in the MVG Applet property. To continue our case study
example we can modify the AHA Customer Profile Form Applet and add a new
Field control with the following characteristics:

Name: AHA Notes MVG
Field: AHA Note

°
°
°
°
°

•
•

Multi Value Fields

[230]

Caption - String Override: Customer Notes
MVG Applet: AHA Notes Mvg Applet
Runtime: TRUE

Due to the length of the notes text, we should provide more space for the
new control.

To test our configuration, we must ensure that all data layer changes have been
applied and all new or modified object definitions have been compiled.

We can then use the Siebel Developer Web Client to navigate to the Process Start
Page view and verify that the Account profile form applet now has a functional multi
value group control to create new notes or select existing notes for a customer.

A Siebel Tools archive file (Chapter 11 Applets.sif) is provided with this chapter's
code file. The file represents the new MVG and Associate applets as well as the AHA
Customer Profile Form Applet after the changes in the preceding section.

Summary
This chapter introduced us to the concepts behind multi value fields in Siebel
CRM. Multi value fields allow us to create links between parent and child business
components and provide a high level of usability to the end user by means of MVG
and association list applets.

The chapter also provided a full case study example that demonstrated how to
create a new M:M relationship between two business components and how to create
the necessary repository object definitions in the data layer, business layer, and
user interface.

In the next chapter, we will learn how to configure data security with Siebel
access control.

•
•
•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Configuring Access Control
Siebel Access Control is a major element of the Siebel CRM architecture. Laid out for
multi-organization implementations, the Siebel CRM business layer provides row
level data security across the entire data model. This means that individual end
users have access to different sets of data from the same view. In this chapter, we
will discover the following topics:

Understanding Siebel Access Control
Configuring View properties for Siebel Access Control
Defining business component view modes
Configuring additional object types for Access Control

Understanding Siebel access control
The Siebel sample database is most suitable for exploring how Siebel access control
works. We can follow the procedure below to examine how the visibility of service
request data is managed by Siebel access control. In the example we will use two
different sample user accounts—Casey Cheng, Call Center Agent, and Fred Roberts,
Service Engineer—to simulate a typical service center scenario:

1. Log in to the Siebel Call Center Demo application as Casey Cheng, using
CCHENG as username and password.

2. Navigate to the Service screen.
3. Click the Service Request List link below the screen bar.
4. The My Service Requests list is displayed.
5. Observe that all records in the list have the Owner field set to CCHENG.
6. In the Help menu, select the About View command.

•
•
•
•

Configuring Access Control

[232]

7. In the About View dialog, note the name of the current view (Personal
Service Request List View) and the name of the list applet (Service
Request List Applet).

8. Click OK to close the About View dialog.
9. In the service request list, click the New button to create a new service

request record.
10. In the new record, provide the following field values:

Owner: FROBERTS
Summary: Testing Siebel access control

11. Press Ctrl+S to save the record.
12. Press Alt+Enter to refresh the list.
13. Observe that the service request record is no longer visible to Casey Cheng.
14. In the File menu, select Connect.
15. In the login dialog enter FROBERTS as username and password and

press Enter.
16. Navigate to the My Service Requests list view.
17. In the Saved Queries drop-down list in the upper-right corner of the

application select New SRs to filter the list.
18. Observe that the service request record created earlier using Casey Cheng's

account is visible to Fred Roberts among other service requests.
19. Open the About View dialog and observe that the names of the view and the

list applet are the same as in step 7.
20. Press Ctrl+Shift+X to log out of Siebel Call Center.

The previous example demonstrates that the same view provides completely
different data sets to different end users. Siebel CRM has several types of
preconfigured visibility views of which the My View is widely used for individual
data access.

When we are logged in to the Siebel sample database as the Siebel Administrator
(SADMIN) we have the broadest responsibility. Therefore, we can use all available
views. When we navigate to the My Service Request list view as SADMIN, we can
click the drop-down icon in the list applet title to see the other available visibility
views as shown in the following screenshot:

°
°

Chapter 12

[233]

As we can observe, there are numerous other visibility views such as My Team's…,
All…, and All … across Organizations.

Selecting one of the entries in the visibility drop-down list navigates to a different
view that typically contains the same applets as the other views in the list. Selecting
the All Service Requests entry, for example, opens the All Service
Request List View.

View properties for access control
The technical difference between the visibility views is that each of them has
different values in its visibility properties. For example, the Personal Service Request
List View, labeled My Service Requests, and the All Service Request List View,
labeled All Service Requests, only differ in name, labeling, and the Visibility
Applet Type property.

The following screenshot shows the two views in Siebel Tools for comparison:

We can confirm that the Visibility Applet Type property is set to Organization for
the All Service Request List View and to Personal for the Personal Service Request
List View.

Did you know?
When the Visibility Applet Type and Visibility Applet properties
are set for a view, we refer to this view as a visibility view.

Configuring Access Control

[234]

The Visibility Applet property references one of the view's applets. The business
component to which this applet refers receives a notification to apply a data
filter when the view is loaded in the client. The Visibility Applet Type property
value specifies the type of filter to apply. The business component must have a
corresponding View Mode child object definition.

Business component view modes
Business component view mode objects have the following key properties:

Reserved Name (see following table).
Owner Type: Identifies the user attribute to use for filtering data. For
example, an owner type of Person means that the user's login ID is used for
the filter. Other values are Position, Organization, Group, and Catalog Group
(see table below for explanations).
Visibility Field: The name of a single value field or multi value field (and
the corresponding multi value link) that is used as the counterpart of the
user attribute, identified by the Owner Type property, for the data filter. For
example, if the owner type is Person and the visibility field is Owner Id,
the business component will only display records where the Owner Id field
contains the current user's login ID.

The following screenshot shows the view mode object definitions for the Service
Request business component as an example:

To view or modify view mode object definitions, we can navigate to the business
component in Siebel Tools, expand the Business Component type in the Object
Explorer, and select the BusComp View Mode type.

•
•

•

Chapter 12

[235]

The following table describes the preconfigured visibility view types and the
corresponding Visibility Applet Type and business component view mode names.
Note that some view types can use different visibility applet types depending on the
data objects:

Visibility View
Type

Visibility Applet
Type (View Mode)

Description

"My View" Personal, Sales Rep When set to Personal, the business
component referenced by the visibility applet
uses the user's login ID to filter records.
When set to Sales Rep, the user's currently
active position is used to filter records.

"All View" Organization The Organization view mode is configured to
display only records that belong to the user's
currently active organization.

"My Team's…" Manager The filter is applied based on the user's login
ID or position. In addition, records belonging
to users that have a child position below the
current user's position are also displayed.
Because this applies to management positions,
the name of the view mode is Manager.

"All … across My
Organizations"

Sub-Organization Similar to the My Team's view but takes the
organization hierarchy into account. Displays
records that belong to the user's organization
and to all its descendant organizations.

Catalog Views Group, Catalog Views that use Group or Catalog as the
visibility applet type provide access control
based on the user's membership to
so-called access groups. Access groups can
be associated to catalogs and categories and
are typically used for product and literature
display.

"All … across
Organizations"

All When the Visibility Applet Type property
is set to All, the business component does
not use a view mode definition. Instead, all
records are displayed that have at least one
organization associated regardless of the
user's current organizational membership.

Configuring Access Control

[236]

Repository object definitions for access
control
The following diagram depicts the relationships between the repository object types
involved in Siebel access control.

From the preceding diagram we can derive the following information:

A visibility view specifies a visibility applet and a visibility applet type
The visibility applet type refers to one of the view mode definitions in the
business component referenced by the visibility applet
A view mode object definition references a field in its parent business
component and one of the user's (or employee's) access control attributes
such as login ID, position, or organization

For the sake of readability, the diagram does not include access
groups and catalogs.

Did you know?
In Siebel terms, an employee is a user who holds at least one
position in an organization.

•
•

•

Chapter 12

[237]

Configuring view properties for Siebel
access control
During a Siebel CRM project it is very likely that a new Siebel view should define the
correct access control settings. The following case study example demonstrates how
to create a new visibility view.

Case study example
As indicated in Chapter 3, Case Study Introduction AHA requires that a new view
titled All Sales Tools created by me should be made available to end users. The
technical architects at AHA have already identified a My Literature list view, which
can be used as the base for the new view. The new view should only display
literature records, or sales tools, that the user has created her-or himself.

The following procedure describes how to copy the existing view (named FINS Sales
Tool List View - My) and modify the copy:

1. Navigate to the view named FINS Sales Tool List View - My.
2. Copy the view using the Ctrl+B shortcut.
3. Modify the copy as follows:

Name: AHA My Sales Tools List View
Project: AHA User Interface
Visibility Applet Type: Personal
Comments: Created for AHA prototype

4. Compile the AHA My Sales Tools List View.
5. Navigate to the Literature Screen object definition.
6. Ensure that you have write access to the Literature Screen by checking it out

or locking it.
7. In the Screen Views list, add a new record and enter the following values:

View: AHA My Sales Tools List View
Type: Aggregate View
Parent Category: Sales Tool List
Viewbar Text - String Override: All Sales Tools created by me
Menu Text - String Override: All Sales Tools created by me
Comments: Created for AHA prototype

°
°
°
°

°
°
°
°
°
°

Configuring Access Control

[238]

8. Right-click the Literature Screen and select Edit Screen View Sequence.
9. In the Screen View Sequence Editor, select the item that represents the AHA

My Sales Tools List View.
10. Use Ctrl+Down to move the view below the view named FINS Sales Tool List

View-My.
11. Press Ctrl+S to save the changes.
12. Close the Screen View Sequence Editor.
13. Compile the Literature Screen.

A Siebel Tools archive file (Visibility.sif) is available with this chapter's code file.
The archive file represents the new AHA My Sales Tools List View and the Literature
Screen after the changes made in the above section.

Registering the new view
We can refer to the instructions in Chapter 6, Views and Screens for details on how to
register a view and associate it to a responsibility.

In short we have to do the following to make the view visible to our test
user account:

Create a new record for the AHA My Sales Tools List View in the Views
list of the Administration - Application screen
Associate the AHA My Sales Tools List View with the AHA Prototype
responsibility

In addition we should add the Admin Sales Tools List view to the AHA Prototype
responsibility in order to be able to create test literature records.

Defining business component view
modes
The new view created in the previous section specifies Personal as the value for the
Visibility Applet Type property. As an additional configuration step we must now
ensure that the business component behind the Sales Tool List Applet (referenced in
the Visibility Applet property) has an accompanying view mode definition.

•

•

Chapter 12

[239]

The following procedure describes how to create a new view mode definition for the
Sales Tool business component:

1. Navigate to the Sales Tool business component.
2. Ensure that you have write access to the Sales Tool business component.
3. In the Object Explorer, expand the Business Component type and select the

BusComp View Mode type.
4. In the Business Component View Modes list, create a new record with the

following values:
Name: Personal
Owner Type: Person
Visibility Field: Created By
Comments: Created for AHA prototype

5. Compile the Sales Tool business component.

A Siebel Tools archive file (Sales Tool BC.sif) is available with this chapter's code
file. The archive file represents the Sales Tool business component after the changes
made in the preceding section.

Testing the access control configuration
To test the filtering capacity of the new configuration we should follow the
procedure given here:

1. Log in to the Siebel Developer Web Client.
2. Open the site map (Ctrl+Shift+A) and navigate to the

Administration - Document screen.
3. Click the link for the Literature view.
4. Click the New File button and browse to a test document. Alternatively we

can drag and drop a file from a Windows Explorer window to the list applet
in the Literature administration view.

5. Step off the new record (or press Ctrl+S) to save it.
6. Open the site map and navigate to the Literature screen.
7. Click the link for the All Sales Tools created by me view.
8. Verify that the view is displayed in the visibility drop-down list in the

upper-left corner of the list applet.
9. Verify that the view only displays records created by the current user.

°
°
°
°

Configuring Access Control

[240]

Did you know?
We can use the Ctrl+Alt+K keyboard shortcut to open the About Record
dialog for the selected record. This dialog reveals the system fields of the
record including the name of the user who created the record.

The following screenshot shows the new AHA My Sales Tools list view:

Configuring additional object types for
access control
The following object types in the Siebel Repository can be configured to support the
Siebel Access Control functionality:

Pick List
Link
Drilldown Object

The following sections describe the visibility-related properties of these object types.

Visibility settings for pick list object
definitions
We can define the following properties, which influence the data set displayed in
pick lists, by applying Siebel Access Control mechanisms:

Visibility Auto All: When this property is set to TRUE and the user has access
to data from the pick list's business component by means of a view that uses
All as the Visibility Applet Type then the data in the pick list is filtered in the
same way as in an All view. When this property is set to FALSE, the data set of
the pick list is governed by the Visibility Type property.

•
•
•

•

Chapter 12

[241]

Visibility Type: When this property is empty, no visibility rules apply.
When it is set to any of the valid visibility modes (Personal, Sales Rep, All,
Manager, Organization, Sub-Organization, Catalog, or Group) then the
underlying business component will filter the data accordingly.

Visibility settings for link object definitions
Similar to pick lists, links can be configured using the Visibility Auto All and
Visibility Type properties. The data filter determined by these properties applies
to the link's child business component.

In addition, links have a property named Visibility Rule Applied. When this
property is set to Always, any view using the link will have access control enforced
on the child business component as specified by the Visibility Type property.
When this property is set to Never, access control on the child records is disabled.
However, when an end user drills down on a child record that she or he is not
allowed to see in the target view, an error message is displayed.

Visibility settings for drilldown object
definitions
Drilldown objects are child object definitions of applets, and as such are covered in
greater detail in Chapter 14, Configuring Navigation. In general, a drilldown object
defines a target view that is opened when the user clicks the hyperlink generated
by the drilldown object.

We can specify a valid view mode for the Visibility Type property of a drilldown
object to control the level of access control in the drilldown object's target
business component.

•

Configuring Access Control

[242]

Summary
Siebel Access Control is a strong and secure filter mechanism that ensures that end
users only see records that they are supposed to see. The filter is applied by matching
a single or multi value field of a business component against the value of one of the
visibility-related user attributes (login ID, position, organization, or access group
membership).

The main developer tasks of creating visibility views and defining business
component view modes have been laid out in this chapter.

In addition, we discussed how access control mechanisms can be used for pick lists,
links, and drilldown objects.

In the next chapter, we will learn how to configure specialized behavior of repository
object definitions with user properties.

User Properties
Many business requirements are very detailed and complex. For example, the end
user community could demand that one field is updated automatically when another
field has been changed. To solve this kind of requirement in Siebel CRM, developers
can define so-called user properties as an extension to the standard properties of
object types such as business components, fields, and applets. In this chapter,
we will discuss the following topics:

Understanding user properties
Business component and field user properties
Applet, control, and list column user properties
Viewing user properties

Understanding user properties
User properties are child object types that are available for the following object types
in the Siebel Repository:

Applet, Control, List Column
Application
Business Service
Business Component, Field
Integration Object, Integration Component, Integration Component Field
View

•
•
•
•

•
•
•
•
•
•

User Properties

[244]

To view the User Property (or User Prop as it is sometimes abbreviated) object type
we typically have to modify the list of displayed types for the Object Explorer
window. As discussed in the previous chapter, this can be achieved by selecting
the Options command in the View menu. In the Object Explorer tab of the
Development Tools Options dialog, we can select the object types for display
as shown in the following screenshot:

In the preceding example, the Business Component User Prop type is enabled
for display.

After confirming the changes in the Development Tools Options dialog by clicking
the OK button, we can for example navigate to the Account business component and
review its existing user properties by selecting the Business Component User Prop
type in the Object Explorer.

The following screenshot shows the list of user properties for the Account
business component:

Chapter 13

[245]

The screenshot also shows the standard Properties window on the right. This is to
illustrate that a list of user properties, that mainly define a Name/Value pair can be
simply understood as an extension to an object type's usual properties, which are
accessible by means of the Properties window and represent Name/Value pairs
as well.

Because an additional user property is just a new record in the Siebel Repository, the
list of user properties for a given parent record is theoretically infinite. This allows
developers to define a rich set of business logic as a simple list of Name/Value pairs
instead of having to write program code.

The Name property of a user property definition must use a reserved name—and
optional sequence number—as defined by Oracle engineering. The Value property
must also follow the syntax defined for the special purpose of the user property.

Did you know?
The list of available names for a user property depends on the object type
(for example Business Component) and the C++ class associated with
the object definition. For example, the business component Account is
associated with the CSSBCAccountSIS class, which defines a different
range of available user property names than other classes.

Many user property names are officially documented in the Siebel Developer's
Reference guide in the Siebel Bookshelf. We can find the guide online at the
following URL:

http://download.oracle.com/docs/cd/E14004_01/books/ToolsDevRef/
ToolsDevRef_UserProps.html

The user property names described in this guide are intended for use by custom
developers. Any other user property that we may find in the Siebel Repository but
that is not officially documented should be considered an internal user property of
Oracle engineering. Because the internal user properties could change in a future
version of Siebel CRM in both syntax and behavior without prior notice, it is highly
recommended to use only user properties that are documented by Oracle.

Another way to find out which user property names are made available by Oracle
to customers is to click the drop-down icon in the Name property of a user property
record. This opens the user property pick list, which displays a wide range of
officially documented user properties along with a description text.

User Properties

[246]

Multi-instance user properties
Some user properties can be instantiated more than once. If this is the case a
sequence number is used to generate a distinguished name. For example, the
On Field Update Set user property used on business components uses a
naming convention as displayed in the following screenshot:

In the previous example, we can see four instances of the On Field Update Set user
property distinguished by a sequential numeric suffix (1 to 4).

Because it is very likely that Oracle engineers and custom developers add additional
instances of the same user property while working on the next release, Oracle
provides a customer allowance gap of nine instances for the next sequence number. In
the previous example, a custom developer could continue the set of On Field Update
Set user properties with a suffix of 13. By doing so, the custom developer will most
likely avoid conflicts during an upgrade to a newer version of Siebel CRM. The
Oracle engineer would continue with a suffix of five and upgrade conflicts will only
occur when Oracle defines more than eight additional instances. The gap of nine also
ensures that the sequence of multi-instance user properties is still functional when
one or more of the user property records are marked as inactive.

In the following sections, we will describe the most important user properties for the
business and user interface layer. In addition, we will examine case study scenarios
to identify best practices for using user properties to define specialized behavior of
Siebel CRM applications.

Business component and field user
properties
On the business layer of the Siebel Repository, user properties are widely used to
control specialized behavior of business components and fields. The following table
describes the most important user properties on the business component level. The
Multiple Instances column contains Yes for all user properties that can be instantiated
more than once per parent object:

Chapter 13

[247]

User Property Name Description Multiple
Instances

Active Field

Active Value

These two user properties define the name
of a business component field and a value
of that field. When the field has the value
defined in the Active Value user property
then the record is considered Active and
can be updated. Otherwise, the record is
considered Inactive and cannot be updated.

No

Admin NoDelete

Admin NoUpdate

When the value of these user properties is
set to Y, the business component prevents
deletions or updates (respectively) even when
the business component is in Admin mode.

No

All Mode Sort

View Mode Sort

Allows developers to control how data is
sorted for views that potentially display
a large number of records (for example,
Manager, All, Organization view modes).
A value of Normal indicates that the business
component's sort specification will be used for
sorting.
A value of TRUE switches the sort order to
the U1 index of the underlying table.
A value of FALSE results in no sorting.
The View Mode Sort user property allows
defining a sort specification for various view
modes when All Mode Sort is set to FALSE.

No

BC Read Only Field The value of this user property is typically the
name of a calculated field that returns Y or N.
When the value is Y the record is read-only,
otherwise the record can be updated as usual.

No

Currency Field Specifies the name of a field in its parent
business component. When the currency of
this field is changed, a new value for this
field is calculated based on the exchange
rates stored for the currency pair in the Siebel
database.

Yes

User Properties

[248]

User Property Name Description Multiple
Instances

Deep Copy

Deep Delete

Deep Copy/Delete Link

Recursive Link

These user properties control the behavior
of the parent business component and child
business components when a parent record is
copied or deleted.

Deep Copy specifies the name of the child
business component in a 1:M relationship
with the parent business component whose
records are copied to the parent copy.

Deep Delete defines the name of a child
business component whose records will be
deleted when the parent record is deleted.

The Deep Copy/Delete Link and Recursive
Link user properties allow defining the link
object definitions that should be used to
determine the set of child records for the deep
copy or delete operations.

Yes

Disable Automatic Trailing
Wildcard Field List

The value of this user property is a list of
field names for which the automatic trailing
wildcard behavior, automatically appending
an asterisk sign (*) to the query string, should
be disabled.

No

Field Read Only Field:
fieldname

A reference to a Boolean field. When the field
returns Y, the field specified in the fieldname
suffix of the user property's name becomes
read-only.

Yes

Named Method Allows developers to specify an action to be
executed when a method is invoked on the
business component.

This user property is discussed in greater
detail in the following section.

Yes

No Clear Field The value of this user property is the name
of a field in the parent business component.
When set, the field cannot be set to NULL.

Yes

NoDelete Field Can be specified once per parent business
component. When the field specified by the
user property returns Y then the entire record
is protected from being deleted.

No

Chapter 13

[249]

User Property Name Description Multiple
Instances

On Condition Set Field Value The value of this user property specifies a
condition, a target field name, and a value
to which the target field is set when the
condition evaluates to TRUE.

Yes

On Field Update Invoke Specifies a field in the parent business
component, a target business component,
and a target method, which is invoked on the
target business component when the field is
updated.

Yes

On Field Update Set Specifies a field in the parent business
component, a target field, and a value to
which the target field is set when the field is
updated.

Example Value:

"Primary Owner Id", "Manual Asgn
Flag", "Y"

Yes

Parent Read Only Field Specifies a field in a business component to
which the current business component has a
child relationship.

When that field returns Y, all records in the
current business component are read-only.

No

Recipient … The user properties with a name starting
with Recipient allow controlling the
behavior of Siebel CRM applications during
communication with customers such as
sending e-mail or fax messages.

Yes

Source: Siebel Developer's Reference, Version 8.1:

http://download.oracle.com/docs/cd/E14004_01/books/ToolsDevRef/
booktitle.html

Named method user property
The Named Method user property can be specified on the business component and
applet level. It is of major importance for implementing automated event flows in
Siebel CRM applications.

User Properties

[250]

For example, we can expose a button on a sales order form applet that allows the end
user to send the current sales order to an external system. The complex processing
of the order data and the invocation of the EAI interface are implemented as a Siebel
workflow process. The invocation of the workflow process can be implemented with
the Named Method user property on the business component level thus providing
business logic support for all applets that are based on the business component.

The syntax for the Named Method user property on the business component level is
as follows:

Name: Named Method N
Value: "Method Name", "Action Type", "Object", "Action Parameters"

The key words in the Value field must be enclosed in double quotes and must be
separated by a comma followed by a space. In the following section, we will discuss
the key words in greater detail:

N: An integer number that defines the sequence in case there are multiple
definitions for the Named Method user property. As indicated above, Siebel
CRM does not allow sequence gaps greater than nine. In addition, only
two-digit sequence numbers are allowed. So the maximum number of
instances for a single user property name is 99.
Method Name: The name of the method. When the method is invoked the
action defined by the following parameters is executed.
Object: Depending on the action type, the object can be a business
component field or a business component against which the action is
executed.
Action Parameters: Except for the INVOKESVC action type (described as
follows), only one action parameter is required. The action parameter is
typically a value or an expression, in Siebel Query Language, that returns
the value for the action.
Action Type: The Siebel CRM framework provides three major types
of actions, SET, INVOKE, and INVOKESVC, which are described in the
following table:

•
•

•

•

•

•

•

Chapter 13

[251]

Action Type Description Example Value and Explanation
SET Allows setting a field,

specified as the object, to the
return value of an expression,
specified as the action
parameter.

"ViolationTrue", "SET",
"Protocol Violation",
"'Y'"

Explanation: When the
ViolationTrue method is invoked,
the Protocol Violation field is set to
Y.

INVOKE With this action type, the
object is the name of a
business component and the
action parameter is the name
of a method to invoke on the
object business component.

"Ungroup", "INVOKE",
"Quote Item",
"WriteRecord"

Explanation: When the Ungroup
method is invoked on the
current business component, the
WriteRecord method is invoked
on the Quote Item business
component.

INVOKESEL Similar to INVOKE but
invokes the method for all
selected records of the object
business component.

INVOKEALL Similar to INVOKE but
invokes the method for all
records of the object business
component.

"UpdateOptyProdQty",
"INVOKEALL",
"Opportunity Product",
"UpdateOptyProdQty"

Explanation: When the
UpdateOptyProdQty method is
invoked on an Opportunity record,
the same method is invoked on
all associated Opportunity Product
records.

User Properties

[252]

Action Type Description Example Value and Explanation
INVOKESVC The INVOKESVC action type

is used to invoke business
service methods and pass
input arguments for these
methods. The object is a
business component. The
action parameters are the
name of the business service,
the name of the method, and
a list of name/value pairs for
the input arguments.

"UpdateProgram",
"INVOKESVC", "LOY
Program", "Workflow
Process Manager",
"RunProcess",
"ProcessName", """LOY
Update Program Process""",
"RowId", "[Id]"

Explanation: When the
UpdateProgram method is invoked,
the Workflow Process Manager
business service's RunProcess
method will be invoked. The input
argument ProcessName will be set
to LOY Update Program Process. The
input argument RowId will be set
to the value of the Id field of the
current record in the LOY Program
business component.

Note: To provide a double quote as
the input, for example to enclose
a string that contains spaces such
as LOY Update Program Process in
the preceding example, we must
specify two double quotes in order
to escape. This explains why the
process name is enclosed in three
double quotes.

Chapter 13

[253]

Action Type Description Example Value and Explanation
INVOKESVCSEL Similar to the INVOKESVC

action type but invokes the
business service method
for the currently selected
records of the object business
component.

"CalculateRoomBlockRates",
"INVOKESVCSEL", "TNT SHM
Sub Opportunity", "TNT
SHM Recurring Events",
"CalculateRoomBlockRates"

Explanation: When the
CalculateRoomBlockRates
method is invoked, the
CalculateRoomBlockRates method
of the TNT SHM Recurring Events
business service will be invoked
for all selected records of the TNT
SHM Sub Opportunity business
component.

INVOKESVCALL Similar to the INVOKESVC
action type but invokes the
business service method for all
records of the object business
component.

We will learn how to use the Named Method user property in an upcoming chapter.

Case study example: Using the On Field
Update Set user property
In Chapter 5, Creating and Configuring Applets we created the AHA Customer Profile
Form Applet. One of the controls in this applet should display the timestamp when
the customer's status was last updated. We have already placed the control, which
maps to the Account Status Date field in the Account business component, on the
applet but it is not yet functional.

The following procedure describes how we can create a new instance of a business
component user property named On Field Update Set in the Account business
component. This user property will enforce an update with the current timestamp
on the Account Status Date field when the Account Status field has been updated:

1. If necessary, configure the Object Explorer window so that the Business
Component User Prop type is exposed.

2. Navigate to the Account business component.
3. Ensure that you have write access to the account business component.

User Properties

[254]

4. In the Object Explorer, navigate to the Business Component User Prop type.
5. Query for all user properties that have names starting with On Field Update Se.
6. Copy the existing user property named On Field Update Set 2.

This user property has a value of "Managers Review",
"Last Manager Review Date", Timestamp() in the
Siebel 8.1.1 SIA repository.

7. Rename the copy to On Field Update Set 14.

The highest sequence number of active On Field Update Set user
properties is 5, so we can add the customer allowance gap of nine to
it. If the sequence numbers in your working repository should be
different for any reason, please adjust the numbering accordingly.

8. Modify the value of the new user property as follows:
"Account Status", "Account Status Date", Timestamp()

Ensure that each comma is followed by a space.

9. Set the Comments to Created for AHA prototype.
10. Step off the record to save it.
11. Navigate to the Account Status Date field and set the following properties:

Type: DTYPE_DATETIME
Comments: Changed Type from DTYPE_DATE to DTYPE_DATETIME for
AHA prototype

12. Compile the Account business component.

To test the changes, we can launch the Siebel Developer Web Client and navigate
to the Process Start Page view in the Accounts screen. It may be necessary to create a
test customer account.

We can then continue the test cycle by modifying the customer's Status field and
using the Tab key to move to the next control. We should be able to observe that the
Last Status Update control now displays the current date and time.

°
°

Chapter 13

[255]

The following screenshot shows the Last Status Update field after changing the
customer's status to Contract Pending:

A Siebel Tools archive file (Account BC.sif) is provided with this chapter's code
files. The file represents the Account business component after the changes in the
preceding section.

Field user properties
The following table describes prominent user properties that we can use to control
the behavior of individual business component fields:

User Property Description
DisableSearch When set to TRUE, wildcard searches using an asterisk (*),

which may negatively impact query performance on the parent
field, are not possible.
The value can be delivered by a calculated field or an
expression to dynamically enable or disable wildcard searches.

DisableSort When set to TRUE, sorting is disabled on the parent field. This
is indicated to the end user by the text Not Sortable displayed
in the tool tip on the list column.
The value can be delivered by a calculated field or an
expression to dynamically enable or disable sorting.

Encrypt…

Display Mask Char

Several user properties allow defining field level encryption
as well as masking of field values, for example credit card
numbers, in the user interface.

Required The value of this user property is typically the name of a
calculated field. When this field returns Y, the parent field of
the user property cannot be empty.

Text Length Override When this user property is present, the Text Length property
of its parent field determines the maximum possible length of
the field text. The value of this user property is irrelevant.
The maximum possible text length of a field is normally
determined by the physical length of the underlying database
table column.

Source: Siebel Developer's Reference, Version 8.1 http://download.oracle.com/
docs/cd/E14004_01/books/ToolsDevRef/booktitle.html

User Properties

[256]

Applet, control, and list column user
properties
The Applet object type provides user properties on the applet level itself as well as
on the control and list column level (for list applets only).

The following table describes some of the most important applet user properties:

User property Description
CanInvokeMethod:
methodname

This user property allows controlling whether a button or menu
item on the applet is enabled (clickable) or disabled (grayed out and
not clickable). The name of the method invoked by the button or by
the command behind the menu item is specified as the second part
of the name (after a colon and a space).
The value of this user property can be either a string—TRUE or
FALSE or eventually Y or N—or an expression that must evaluate
to TRUE or FALSE.
Example:
Name: CanInvokeMethod: CancelFunction
Value: [Freeze Flag] <> "Y"

Explanation:
Buttons or menu items exposing the CancelFunction method will
only be clickable when the value of the Freeze Flag field is not Y.

Default Applet
Method

The value of this applet user property is the name of a method that
is provided by the applet's buttons or menu items. The end user can
simply press the Enter key to invoke the method.

Default Focus… It is possible to set the focus of a control or list column that is not
the first in the display sequence by using the Default Focus user
properties. This may allow faster access to the control or list column
for end users. The user property can be defined individually for
each template type such as Edit, New, and Query.

Named Method N:
methodname

The syntax for the Named Method user property on the applet level
differs slightly from the business component level: the name of the
method is defined as the second part of the user property name
(after a colon and a space).

NoDataHide When the value of this user property is set to Y, the applet will not
be displayed when there is no data to display.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 13

[257]

Control user properties
The most notable user properties for Control objects are related to navigation events.
The Url user property must be added to a button control that invokes the GotoUrl
method and specifies the target URL. The View user property is a child object
definition of a button control that invokes the GotoView method and defines the
view to which the Siebel application navigates when the button is clicked.

List column user properties
The List Column object type supports the DisableSort user property that allows
controlling the presence or absence of sorting functionality for a specific list column
rather than for all list columns in potentially many applets (when defined on the
field level).

View user properties
The only officially documented user property for the View object type is
DefaultAppletFocus. The value of this user property is the name of one of
the view's applets. The applet will have focus when the view is loaded.

Summary
User properties are a powerful resource for defining special application behavior and
business logic. They are provided as an alternative to writing custom script code by
Oracle engineering.

Because user properties are often limited to certain classes, in the case of business
components and applets, their functionality is not always easy to understand.

In this chapter, we introduced the most important user properties for business
components, fields, applets, controls, list columns, and views.

In the next chapter, we will learn how to support navigation concepts such as
drilldowns, applet toggles, and the thread bar.

Configuring Navigation
The Siebel CRM user interface supports the end user's desire to quickly navigate
forward and backward while carrying out tasks. This chapter introduces the concept
of drilldowns, the thread bar, and toggle applets and shows us how these navigation
elements can be configured in Siebel Tools. The chapter is structured as follows:

Understanding drilldown objects
Creating static drilldowns
Creating dynamic drilldowns
Configuring the thread bar
Configuring toggle applets

Understanding drilldown objects
In Siebel CRM, a drilldown is the activity of clicking on a hyperlink, which typically
leads to a more detailed view of the record where the hyperlink originated. The
standard Siebel CRM applications provide many examples for drilldown objects,
which can mainly be found on list applets such as in the following screenshot that
shows the Opportunity List Applet:

The Opportunity List Applet allows the end user to click on the opportunity name or
the account name. Clicking on the Opportunity Name navigates to the Opportunity
Detail - Contacts View in the same screen while clicking on the Account name
navigates to the Account Detail - Contacts View on the Accounts screen.

•
•
•
•
•

Configuring Navigation

[260]

Siebel CRM supports both static and dynamic drilldown destinations. The
Opportunity List Applet (in Siebel Industry Applications) defines dynamic
drilldown destinations for the opportunity name column depending on the
name of the product line associated with the opportunity.

We can investigate this behavior by creating a test opportunity record and setting its
Product Line field (in the More Info view) to Equity.

When we now drill down on the Opportunity Name, we observe that the FINCORP
Deal Equity View is the new navigation target, allowing the end user to provide
detailed equity information for the opportunity.

To test this behavior, we must use the Siebel Sample Database for
Siebel Industry Applications (SIA) and log in as SADMIN.

We can now inspect the Opportunity List Applet in Siebel Tools. Every applet that
provides drilldown functionality has at least one definition for the Drilldown Object
child type. To view the Drilldown Object definitions for the Opportunity List Applet
we can follow the following procedure:

1. Navigate to the Opportunity List Applet.
2. In the Object Explorer, expand the Applet type and select the Drilldown

Objects type.
3. Inspect the list of Drilldown Object Definitions.

The following screenshot shows the drilldown object definitions for the Opportunity
List Applet:

Chapter 14

[261]

We can observe that a drilldown object defines a Hyperlink Field and a (target)
View. These and other properties of drilldown objects are described in more detail
later in this section. There are various instances of drilldown objects visible in the
previous screenshot that reference the Name field. One instance—named Line of
Business defines dynamic drilldown destinations that can be verified by expanding
the Drilldown Object type in the Object Explorer and selecting the Dynamic
Drilldown Destination type (with the Line of Business drilldown object selected).

The following screenshot shows the dynamic drilldown destination child object
definitions for the Line of Business drilldown object:

The child list has been filtered to show only active records and the list is sorted by
the Sequence property.

Dynamic Drilldown Destinations define a Field of the applet's underlying business
component and a Value. The Siebel application verifies the Field and Value for
the current record and—if a matching dynamic drilldown destination record is
found—uses the Destination Drilldown Object to determine the target view for the
navigation. When no match is found, the view in the parent drilldown object is used
for navigation.

When we investigate the drilldown object named Primary Account, we learn that it
defines a Source Field and a target business component, which is a necessity when
the drilldown's target View uses a different business object than the View in which
the applet is situated. In order to enable the Siebel application to retrieve the record
in the target View, a source field that carries the ROW_ID of the target record and
the business component to query must be specified.

Configuring Navigation

[262]

The following table describes the most important properties of the Drilldown
Object type:

Property Description
Hyperlink Field A field of the applet's underlying business component that is

exposed as a list column or control. The list column or control
is automatically rendered as a hyperlink when a drilldown
object references it.

View The target view for the navigation.
Business Component The name of the target business component. Must be set when

the target view uses a different business object than the view
that contains the parent applet.

Source Field The name of a field in the applet's underlying business
component that is used to match with the destination field in
the target business component.

Destination Field The name of a field in the target business component.
Sequence Used for dynamic drilldowns. When more than one drilldown

object reference the same hyperlink field, the one with the
lowest sequence number must define dynamic drilldown
destinations.

Visibility Type Allows the developer to specify the view mode for the target
business component.

The following table describes the most important properties for the Dynamic
Drilldown Destination type:

Property Description
Field A field of the applet's underlying business component. This

field does not need to be exposed on the applet.
Value A possible value for the field. When the value of the

current record matches the value in the dynamic drilldown
destination, the application uses the destination drilldown
object to define the target view.

Destination Drilldown
Object

The name of one of the applet's drilldown objects.

Sequence Controls the sequence in which the application evaluates the
conditions defined by the field/value pairs.

Creating static drilldowns
In the following section, we will learn how to create static drilldowns from list and
form applets.

Chapter 14

[263]

Case study example: Static drilldown from list
applet
In earlier chapters, we created the AHA Customer Documents List Applet, which
provides a unified view for all quotes, orders, opportunities, and so on, associated
with an account. The applet should provide drilldown capability to the documents
and the employee details of the responsible person.

In the following procedure, we describe how to create a static drilldown from
the AHA Customer Documents List Applet to the Relationship Hierarchy View
(Employee), which displays the reporting hierarchy and employee details:

1. Navigate to the AHA Customer Documents List Applet.
2. Check out or lock the applet if necessary.
3. In the Object Explorer, expand the Applet type, and select the Drilldown

Object type.
4. In the Drilldown Objects list, create a new record and provide the following

property values:
Name: Responsible Employee
Hyperlink Field: Responsible User Login Name
View: Relationship Hierarchy View (Employee)
Source Field: Responsible User Id
Business Component: Employee
Destination Field: Id
Visibility Type: All

5. Compile the AHA Customer Documents List Applet.

We will continue to work on the AHA Customer Documents List Applet later in
this chapter.

Creating drilldown hyperlinks on form applets
Sometimes it is necessary to provide a drilldown hyperlink on a form applet.
The following procedure describes how to accomplish this using the SIS Account
Entry Applet as an example. The applet will provide a hyperlink that allows quick
navigation to the Account Detail - Activities View:

1. Navigate to the Account business component.
2. Check out or lock the business component if necessary.

°
°
°
°
°
°
°

Configuring Navigation

[264]

3. Add a new field with the following properties:
Name: AHA Drilldown Field 1
Calculated: TRUE
Calculated Value: "Drilldown 1" (include the parentheses)

4. Compile the Account business component.

Did you know?
We should create a dummy field like in the previous
example to avoid interference with standard fields when
creating drilldowns on form applets. This field will be
referenced in the drilldown object and control.

5. Navigate to the SIS Account Entry Applet.
6. Check out or lock the applet if necessary.
7. In the Object Explorer, expand the Applet type and select the Drilldown

Object type.
8. Create a new entry in the Drilldown Objects list with the following

properties:
Name: AHA Activity Drilldown
Hyperlink Field: AHA Drilldown Field 1
View: Account Detail - Activities View

9. In the Object Explorer, select the Control type.
10. In the Controls list, create a new record with the following properties:

Name: AHA Activity Drilldown
Caption: Go to Activities
Field: AHA Drilldown Field 1
HTML Type: Link
Method Invoked: Drilldown

11. Right-click the SIS Account Entry Applet in the top list and select Edit Web
Layout to open the layout editor.

12. Drag the AHA Activities Drilldown control from the Controls|Columns
window to the grid layout and drop it below the Zip Code text box.

13. Save the changes and close the web layout editor.
14. Compile the SIS Account Entry Applet.

°
°
°

°
°
°

°
°
°
°
°

Chapter 14

[265]

15. Log in to the Siebel client and navigate to the Account List view.
16. Click on the Go to Activities link in the form applet and verify that the

activities list is displayed for the selected account.

The following screenshot shows the result of the previous configuration procedure in
the Siebel Web Client:

Clicking the Go to Activities hyperlink on the form applet will navigate the user to
the activities list view for the current account.

Creating dynamic drilldowns
In the following section, we will learn how to configure dynamic drilldown objects
for a list applet.

Case study example: Dynamic drilldown
destinations for a list applet
The AHA technical architect team has defined the drilldown behavior for the AHA
Customer Documents List Applet so that clicking on the document Id should
navigate to a detail view depending on the document type. Clicking on a quote
Id should for example navigate to the quote pricing view while clicking on an
opportunity Id should navigate to the opportunity product view.

The following procedure describes how to configure the AHA Customer Documents
List Applet for dynamic drilldowns:

1. Navigate to the AHA Customer Documents List Applet.
2. Check out or lock the applet if necessary.

Configuring Navigation

[266]

3. In the Object Explorer, expand the Applet type and select the Drilldown
Object Type.

4. In the Drilldown Objects list, create four records—one for each drilldown
destination—for the Document Id field (set as Hyperlink Field and Source
Field) according to the following table:

Document
type

Drilldown
name

Drilldown target
view

Business
component

Target
field

Sequence

Opportunity Opportunity
- Products

Opportunity
Detail - Products
View

Opportunity Id 1

Quote Quote -
Pricing

Quote Detail
View (Pricing)

Quote Id 2

Order Order -
Pricing

Order Entry -
Line Items View
(Sales)(Pricing)

Order Entry
- Orders

Id 3

Marketing
Response

Response -
Detail

Response Detail
View (Detail)

Response Id 4

5. In the Drilldown Objects list, select the Opportunity - Products entry.
6. In the Object Explorer, expand the Drilldown Object type and select the

Dynamic Drilldown Destination type.
7. In the Dynamic Drilldown Destinations list create four records—one for

each drilldown destination—with the Field property set to Document Type.
The following table provides the details for the records to be created:

Name Value Destination Drilldown
Object

Sequence

Opportunity Opportunity Opportunity - Products 1
Quote Quote Quote - Pricing 2
Order Order Order - Pricing 3
Response Response Response - Detail 4

8. Compile the AHA Customer Documents List Applet.

The AHA Customer Documents List Applet will be added
to the AHA Customer Process Start View in a later chapter.
Because the mechanism to populate the AHA Customer
Documents business component is not yet implemented,
we cannot yet test the drilldown configuration.

Chapter 14

[267]

The Siebel Tools archive file (AHA Customer Documents List Applet.sif) in this
chapter's code files represents the applet after the changes in this chapter.

Configuring the thread bar
The thread bar is a navigation utility that allows the end user to identify the current
drill path and to navigate back to views and records she or he has previously visited.

Did you know?
The name thread bar is an analogy to the legendary ball of red wool
thread that the Greek goddess Ariadne gave to Theseus, who was
supposed to kill the tyrannical Minotaur in his maze hideout. Theseus
attached the thread at the entrance of the maze and safely found his way
out again.
In a similar manner—albeit with less bloodshed—the end user can find
her or his way out of the maze of views.

The following screenshot shows the thread bar in the Siebel Web Client:

The end user has used drilldowns to navigate from the Account named 3Com to the
contact Todd Sarkissian. He then drilled down on a service request (SR) and on one
of the SR's activities. By clicking the hyperlinks in the thread bar, the end user can
navigate backwards in the drilldown history.

The hyperlinked text in a thread bar entry is composed of two parts, which are
separated by a colon (:). The first part is a static text and the second part is the
value of a field in the business component referenced by one of the view's applets.

The following properties of the View object type define the thread bar text:

Property Description
Thread Title The static first portion of the thread bar entry for the view. Symbolic

Strings can be used to provide translatable text.
Thread Applet A reference to one of the view's applets. Typically the upper applet,

exposing the primary business component, is used.
Thread Field The name of a field in the thread applet's business component. The value of

this field will be displayed in the second portion of the thread bar entry.

Configuring Navigation

[268]

Case study example: Configuring the thread
bar
In previous chapters we created and modified the AHA Customer Process Start
View. The following procedure describes how to configure the thread properties
of this view:

1. Navigate to the AHA Customer Process Start View.
2. Check out or lock the view if necessary.
3. In the Object List Editor, set the following properties:

Thread Title - String Override: AHA Customer
Thread Applet: AHA Customer Profile Form Applet
Thread Field: Name and Location

4. Compile the AHA Customer Process Start View.
5. Test the changes by logging in to the Siebel client and clicking any drilldown

in the AHA Customer Process Start View.
6. Observe that the thread bar displays the text AHA Customer followed by a

colon and the name and location of the current account record.

Configuring toggle applets
Toggle applets are applets that are associated with an original applet and appear
instead of the original applet, either when the end user selects the toggle applet
(manual toggle) or dynamically depending on the value of a field in the applet's
business component.

Manual applet toggle
The first situation—the static or manual toggle—is that an end user can use a
drop-down list or tabs to select a different applet. The following screenshot
shows an example in the Siebel standard application:

°
°
°

Chapter 14

[269]

The Organizational Analysis view (ESP Business Service Unit Contacts View) in the
Enterprise Selling Process category of the Accounts screen uses a specialized applet
(ESP BSU Organization Analysis Applet) that allows the end user to switch between
the organization chart graphic and the standard list applet (ESP BSU Contact List
Applet) by means of a drop-down list.

When we inspect the ESP BSU Organization Analysis Applet in Siebel Tools, we
find that the ESP BSU Contact List Applet is listed in the Applet Toggles list as
shown in the next screenshot:

We can observe that the only property with a value is the Applet property. The drop-
down list in the UI is populated automatically by the system using the applet's Title
property value.

The process of configuring a manual applet toggle is therefore very simple and only
consists of adding new records for the toggle applets to the original applet. The only
consideration is that all applets must reference the same business component.

Configuring Navigation

[270]

Dynamic applet toggle
As we can see in the previous screenshot, an Applet Toggle object definition
optionally specifies an Auto Toggle Field along with an Auto Toggle Value
(not visible in the screenshot), which allow the system to determine the toggle
applet dynamically.

A good example in the Siebel standard application is the Account Profile Applet.
The following screenshot shows the list of Applet Toggles for this applet:

As we can observe in the previous screenshot, the Account Profile Applet will be
replaced automatically with the Retail Outlet Profile Applet when the Calculated
Type field's value is Retailer. There are a total of six toggle applets defined for the
Account Profile Applet.

We can observe the dynamic toggle behavior of the Account Profile Applet by
following the procedure:

1. Log in to the Siebel Mobile Web Client as SADMIN, using the Siebel Sample
Database as the data source.

2. Navigate to the Accounts screen, My Accounts view.
3. Drill down on the first record in the list.
4. Click the More Info view tab. The lower applet in this view is the Account

Profile Applet.
5. In the upper form applet, set the Account Type field to Retailer and press the

Tab key to leave the field.
6. Observe that the Account Profile Applet is replaced with the Retail Outlet

Profile Applet automatically.

Chapter 14

[271]

Use the About View dialog from the Help menu to verify
the applet name.

7. Observe the behavior for other values of the Account Type field such as
Hospital.

When we wish to configure dynamic toggling for an applet, we have to follow the
procedure described:

1. Navigate to the applet.
2. Check out or lock the applet if necessary.
3. In the Object Explorer, expand the Applet type and select the Applet

Toggle type.
4. In the Applet Toggles list create a new record for each toggle applet and

provide values for the following properties:
Applet: Name of the toggle applet
Auto Toggle Field: Name of a field in the parent applet's
business component (can be a calculated field)
Auto Toggle Value: The value of the auto toggle field to
indicate the matching record
Sequence: The numeric sequence to check the dynamic toggle
conditions

5. Compile the applet.
6. Test your changes in the Siebel Mobile or Developer Web Client.

Summary
Assisting end users while they are navigating the Siebel CRM user interface is an
important task for developers.

The classic navigation utility is the drilldown, which can be defined as static,
targeting the same view all the time, or dynamic, allowing for decision logic
to be applied before selecting the target view for the drilldown.

Drilldowns are always displayed as hyperlinks to the end user and are tightly
coupled with the thread bar. The thread bar content can be configured at the view
level by defining the static and dynamic portions to display.

Toggle applets allow either manual or automatic selection of a replacement applet.

In the next chapter, we will learn how to customize the look and feel of the Siebel
CRM user interface.

°
°

°

°

Customizing the Look and
Feel of Siebel Applications

The visual appearance—also referred to as Look and Feel—of Siebel web applications
can be customized by modifying Siebel web template files, cascading style sheets,
and image files. This chapter discusses the techniques to apply these changes in a
safe and upgradeable manner.

The chapter is structured as follows:

Understanding Siebel web templates
Customizing Siebel web templates
Customizing web pages
Customizing style sheets
Configuring bitmaps and icon maps
Replacing the application logo

Understanding Siebel web templates
Siebel Web Template (SWT) files are proprietary files that combine typical
Hypertext Markup Language (HTML) tags with processing instructions for the
Siebel Web Engine (SWE). The SWE is responsible for rendering applets, views,
and web pages at runtime. The main categories for web templates are:

Applet web templates
View web templates
Web Page web templates

•

•

•

•

•

•

•

•

•

Customizing the Look and Feel of Siebel Applications

[274]

In previous chapters, we have learned a lot about applets and views but not web
pages. A web page can be described as any page that is neither an applet nor a view.
Examples of web pages are the login page and the banner frame (containing the
menu and logo of an application).

SWT files are stored in a directory named WEBTEMPL. This directory is present in each
Siebel Server, Mobile or Developer Web Client, and Siebel Tools installation folder.

In order to get a deeper understanding of SWT files and their structure we can
inspect the CCFrameBanner.swt file, which defines the banner displaying the
application menu and the application logo as shown in the following screenshot:

This part of the application is defined in the CCFrameBanner.swt file, which is
shown in the following screenshot:

The previous screenshot was taken from the Web Template Explorer, which can be
opened in Siebel Tools by selecting View | Windows | Web templates Window
from the menu. The benefit of the Web Template Explorer is that it provides color
coding to easily distinguish the elements of the file.

Chapter 15

[275]

The CCFrameBanner.swt file and its siblings not only contain both standard HTML
tags such as <table> and <a> but also a variety of proprietary <swe:> tags. These
tags represent instructions for the Siebel Web Engine, which replaces them with
HTML code and data at runtime. The most important <swe:> tags are described in
the following table:

SWE tag Description
<swe:this> Refers to the current object that uses the template. Used to

display properties of that object.
<swe:include> Uses the file attribute to reference another SWT file. This is

also referred to as nested templates and provides a high level of
reusability.

<swe:switch>
<swe:case>
<swe:default>

Used to create conditional sections in the SWT file. The <swe:
case> tag can be used in conjunction with business services to
determine conditions dynamically.

<swe:menu> A specialized tag that is replaced with the application menu
at runtime. The tag also allows defining the foreground and
background color as well as the dimensions of the menu.

<swe:pageitem> Page items are placeholders, identified by an ID number, which
can be replaced with content that is mapped as web template
items in Siebel Tools.

<swe:image> Defines the category and name of a bitmap image—defined in
the Siebel Repository—that replaces the tag at runtime. Used for
the application logo.

Did you know?
We can find a detailed description of all <swe:> tags in the Siebel
Web Engine Tags section of the Siebel Developer's Guide in the Siebel
bookshelf.

The following table describes the most important <swe:> tags for applet
web templates:

SWE tag Description
<swe:control> A placeholder—identified by an ID number—to which a control

such as a button, text box, or list column can be bound in the
applet web layout editor.

<swe:for-each> Allows the implementation of loops. Typically used to render
a large number of repeating elements such as list columns.
Specifies a start value, a count, and the name of a variable that
holds the current value.

Customizing the Look and Feel of Siebel Applications

[276]

The following table describes the most important <swe:> tags for view web templates:

SWE tag Description
<swe:applet> Placeholder for applets—identified by an ID number. Applets can

be bound as View Web Template Item object definitions to the
placeholders in the view web layout editor.

<swe:threadbar> This tag is replaced with the thread bar at runtime.

<swe:viewbar>

<swe:viewlink>

Placeholders for the view tab bar and its subordinate link bar.

Web template definitions
SWT files are stored outside of the Siebel Repository. To be able to reference them
from repository-based object definitions such as applets, views, and web pages,
developers use the Web Template object type.

A Web Template object definition has an associated Web Template File object
definition, which contains the name of the file in the WEBTEMPL directory. Web
Template object definitions can therefore be described as outward references
because they point from the Siebel Repository to a file outside of it.

The following screenshot shows the View Detail web template as an example:

We can see that the Web Template File object definition associated with the View
Detail Web Template references the CCViewDetail.swt file.

As we have learned in previous chapters, Web Template object definitions are
referenced as child object definitions in the applet, view, and web page object types.

Chapter 15

[277]

In summary, we can state the following about Siebel Web Templates:

SWT files contain HTML markup and <swe:> tags
Web Template object definitions serve as references to SWT files from within
the Siebel Repository
Applets, views, and web pages use web templates to link to the SWT files
The <swe:> tags are interpreted at runtime by the SWE, which resides in the
Application Object Manager
The SWE resolves the nesting and logic such as decisions or loops and
replaces the <swe:> tags with HTML content and data at runtime
The result of the SWE's work, the page, is delivered to the browser

Considerations for customizing the look
and feel of Siebel applications
While many Siebel projects keep customization of the look and feel of the
applications to a minimum (replacing the Oracle logo in the upper-right corner of
the application window with the company logo is often the only change) there are
situations that make customization a necessity.

Such situations are for example:

Company style guides and branding rules (especially for customer-facing
applications published on the Internet)
Adherence to requirements imposed by norms and regulations for
accessibility for the visually impaired
Data model configurations that impact the amount of data displayed
on applets

In the following sections, we will discuss several techniques related to customizing
Web Templates, cascading style sheets, and image files for Siebel CRM applications.

•

•

•

•

•

•

•

•

•

Customizing the Look and Feel of Siebel Applications

[278]

Did you know?
The term customization is used in this chapter mainly because Oracle
frequently reminds customers that changes made to Web Templates, style
sheets, and image files must typically be executed repeatedly when an
upgrade to a newer version of Siebel CRM is applied.
In the software industry, customization, as opposed to configuration, refers
to changes made by customers to pre-built applications such as Siebel
CRM when these changes are not supported directly by the upgrade logic.

We will discuss the following example scenarios in the next sections:

Increasing the number of columns that can be displayed in a list applet
Creating a custom view web template
Changing the appearance of the login page
Modifying the color schema of Siebel applications
Configuring bitmaps for static images
Configuring icon maps to display data values graphically
Replacing the company logo

In real life, we have to take into consideration that changes to the aforementioned
files have a wide range of impact. For example, changing the color code in the
application's main style sheet will affect the entire application.

In addition, following this book's configure with the upgrade in mind approach, we will
provide solutions that have the least level of effort during a Siebel upgrade.

Using an external text editor for web template
customization
Siebel Tools can be configured to invoke an external text editor to modify Web
Template files that reside in the WEBTEMPL directory of Siebel Tools. The following
procedure describes how to prepare Siebel Tools for Web Template customization:

1. In the View menu, select the Options… command.
2. Click on the Web Template Editor tab.
3. Click on the Browse button.
4. Navigate to a folder that contains the executable file of the text editor. For

example, we can choose C:\WINDOWS\NOTEPAD.EXE or point to any other text
editor of our choice.

•

•

•

•

•

•

•

Chapter 15

[279]

5. Select the executable file and click on the Open button.
6. Click OK to close the Options dialog.

We can now load SWT files into the text editor from the following places in
Siebel Tools:

Web Template Explorer: Right-click the template viewer and select
Edit Template
Applet Editor: Click the Edit Template button in the Controls/Columns
docking window
View Editor: Click the Edit Template button in the Applets docking window
Web Page Editor: Right-click the layout window and select Edit Template

The text editor will open the respective SWT file from the WEBTEMPL directory in the
Siebel Tools installation folder. When changes are saved in the text editor, Siebel
Tools prompts to reload the web template file once the text editor is closed.

To test the changes we must manually copy the modified files to the WEBTEMPL
directory of the Siebel Mobile or Developer Web Client installation folder and
subsequently to the WEBTEMPL directories on all Siebel Server machines.

It is a recommended practice to create a backup copy before we start modifying
the files.

Customizing pre-built web templates
The following example scenario shows how to increase the number of columns that
can be displayed in a list applet. Techniques shown in this chapter can be applied to
any type of customization to SWT files.

The SWT file used in the example is CCAppletList_B_EL.swt and files that are
referenced by it. This file is referenced in the Siebel Repository as the Web Template
named Applet List (Base/EditList). This Web Template is the base for the majority
of list applets:

1. In the View menu, select Windows | Web templates Window to open the
Web Template Explorer.

2. In the drop-down box on top of the Web Template Explorer window, select
the CCAppletList_B_EL template.

•

•

•

•

Customizing the Look and Feel of Siebel Applications

[280]

We can type the name of the template after opening the
drop-down box for faster location of the template.

3. In the Web Template Explorer, expand the CCAppletList_B_EL template
and select the CCListHeader template.

This is the SWT file that defines the column
header row.

4. Right-click on the CCListHeader template in the lower half of the web
template viewer and select Edit Template.
The following screenshot illustrates step 4:

5. In the text editor window, use the Save As functionality to create a backup
copy named CCListHeader_Original.swt.

6. Use the Open File functionality of the text editor to open the CCListHeader.
swt file again in case the editor has closed it as a result of the procedure of
saving the backup copy.

7. Use the Text Search functionality of the text editor to locate the last <swe:
for-each> tag.

8. Select the entire element enclosed by <swe:for-each> and </swe:for-
each> tags.

9. Copy the selection to the clipboard by pressing Ctrl+C.

Chapter 15

[281]

10. Position the cursor below the selection.
11. Create a new line (press Enter).
12. Enter a comment similar to the following:

<!-- Customization for AHA UI prototype: Added 10 columns -->

13. Create a new line (press Enter)
14. Paste the content of the clipboard by pressing Ctrl+V.
15. In the pasted text, change the value of the startValue attribute to 701.
16. In the pasted text, change the value of the count attribute to 10.
17. Position the cursor below the new element.
18. Create a new line (press Enter).
19. Enter a comment similar to the following:

<!-- End of customization -->
20. Compare your work with the following screenshot:

21. Save the changes and close the text editor.
22. Click on OK in the File Changed dialog in Siebel Tools to reload the file.
23. Scroll down in the Web Template Viewer if necessary to verify the changes.
24. Use the syntax-based color coding to verify that all changes are correct.
25. Copy the CCListHeader.swt file from the Siebel Tools WEBTEMPL directory

to the same directory in the Siebel Mobile or Developer Web Client
installation folder.

26. Repeat steps 3 to 25 for the CCListBody template.

This is necessary because this template defines the body
section of the list applets and needs the same column
placeholders as the CCListHeader template.

Customizing the Look and Feel of Siebel Applications

[282]

The files CCListHeader.swt and CCListBody.swt in this chapter's code files contain
the changes applied in the previous section.

Modifications similar to the ones described in the previous procedure can be applied
to all SWT files shipped by Oracle. However, we should document the changes
diligently (using at least the comments feature) and be prepared to manually merge
the changes into the newer version of the respective files after an upgrade to a newer
version of Siebel CRM.

Alternatively, we can create custom SWT files and register them in the repository.
This technique is shown in the following section:

Creating custom web templates
The following sample procedure uses the CCViewDetail_ParentPntr.swt file,
which is used for the majority of detail views. The example scenario is that the
developers need an additional pair of applets that consume 50 percent of the screen
width. The respective applet placeholders should be situated at the end of the
template. Because there is only a limited number of views that will display a grid
of six smaller applets, the developers decided to create a custom template to avoid
problems after a potential upgrade:

1. Open the WEBTEMPL directory of the Siebel Tools installation folder in
Windows Explorer.

2. Locate the CCViewDetail_ParentPntr.swt file and copy it.
3. Rename the copy to AHA_ViewDetail_ParentPntr.swt.
4. Open the AHA_ViewDetail_ParentPntr.swt file in a text editor.
5. Locate the <table> HTML element in the main content section. The element

should look similar to the following snippet (only the first few lines are
shown):
<table width="100%" border="0" cellspacing="0"
 cellpadding="3">
<tr valign="top">
<td width="50%">

6. Select the lines from <table… to the first occurrence of the </table> element
(the entire table definition) and copy them to the clipboard.

7. Position the cursor below the last </swe:for-each> tag.
8. Enter a new line and a comment similar to the following:

<!-- Customization for AHA UI prototype: added 2 applets -->

Chapter 15

[283]

9. Enter a new line and paste the code from the clipboard.
10. In the pasted code, change the value of the first startValue attribute to 18.
11. Change the value of the first count attribute to 1.
12. Repeat steps 10 and 11 for the second startValue attribute (setting its value

to 19) and count attribute (setting it to 1).
13. Add a comment at the end of the custom code, similar to the following:

<!-- End of customization -->
14. Compare your work with the following screenshot:

15. Save and close the file.
16. Copy the AHA_ViewDetail_ParentPntr.swt file to the client's WEBTEMPL

directory.

The file AHA_ViewDetail_ParentPntr.swt is available with this chapter's code files.

Registering a custom web template file
The following procedure describes how to register a custom SWT file—similar to the
one created in the previous section—as a new Web Template object definition in the
Siebel Repository. After registering the file as a Web Template, we can associate it
with any suitable object, for example a View:

1. In Siebel Tools, navigate to the Web Template type in the Object Explorer.
2. In the object list editor, create a new record with the following

property values:
Name: AHA View Detail (Parent with Pointer)
Project: AHA User Interface

°

°

Customizing the Look and Feel of Siebel Applications

[284]

Type: View Template
Comments: Created for AHA prototype

3. In the Object Explorer, expand the Web Template type and select the Web
Template File Type.

4. In the Web Template Files list create a new record with the following
property values:

Name: AHA View Detail (Parent with Pointer)
Filename: AHA_ViewDetail_ParentPntr.swt

5. Compile the AHA View Detail (Parent with Pointer) web template.

Customizing web pages
As mentioned in the previous section, a web page is a repository object type that isin the previous section, a web page is a repository object type that is, a web page is a repository object type that is
neither an applet nor a view. The Siebel application login page is a perfect examplelogin page is a perfect example is a perfect example
of a web page. Web pages are referenced by application object definitions from theapplication object definitions from the object definitions from the
following properties:

Container Web Page: The name of a web page that defines the overall
frameset for the Siebel application.
Login Web Page: The name of a web page that is used as the login page.
Acknowledgement Web Page: The name of a web page that is shown
when the user has successfully logged on. Typically empty in favour of the
Acknowledgement Web View property.
Error Web Page: The name of a web page that is shown in case of an error.
Logoff Acknowledgement Web Page: The name of a web page that is shown
after the user has logged off.

The following are among the most common customization scenarios for web pages:

Modify the SWT file associated with the web page to change the overall
layout or references to image files.
Modify the captions of the web page items associated with the web page.
However we are not allowed to change or deactivate the Oracle copyright
notice on the login page.
Create new web page items and place them on newly created placeholders
in the SWT file. For example, a link to a help file could be placed on an error
web page.

°

°

°

°

•

•

•

•

•

•

•

•

Chapter 15

[285]

Customizing style sheets
Similar to many other web-based applications, Siebel CRM also uses cascading-based applications, Siebel CRM also uses cascadingbased applications, Siebel CRM also uses cascading
style sheet (CSS) files to define its visual appearance in the web browser. CSS is a
commonly used technology in web development.

Developers who are requested to customize the CSS files shipped with Siebel CRM
applications should consider the following:

We should have a thorough understanding of the CSS syntax before we
manipulate the files
Changes to Siebel CSS files affect the entire application
We must establish a clear backup and documentation strategy because
all changes must be reapplied after an upgrade to a newer version of
Siebel CRM

The following example procedure describes how to customize the look and feel of
the thread bar by modifying the main.css file. This file is the primary resource
for employee-facing high-interactivity applications such as Siebel Call Center and
Siebel Sales:

1. On the developer workstation, navigate to the public|enu|files directory
in the installation folder of the Siebel Developer Web Client.

2. Make a backup copy of the main.css file and name the copy
main.css.original.

3. Open the main.css file in a text editor.

There are a number of open source and commercial CSS
editors on the market that facilitate the task of inspecting and
modifying cascading style sheets. In this simple scenario, a
text editor such as Microsoft Notepad is sufficient.

4. Use the text search functionality of the text editor to locate the section for the
thread bar formatting. Sections in the Siebel CSS files can be identified by
comments such as /* Threadbar */.

5. Copy the entire threadbar section (including the header comment) and paste
it again after the original to create a backup copy of the original data.

6. Edit the header comment of the copy to /* Original Threadbar */.

•

•

•

Customizing the Look and Feel of Siebel Applications

[286]

7. Use the /* and */ characters to enclose the original threadbar formatting
instructions in comments. Compare your work with the following
screenshot:

8. Edit the remaining threadbar section so that it contains the following
instructions:
/*--------------*/
/* Threadbar */
/* Customized for AHA prototype */
/*--------------*/
.threadbar { font-size: 8pt;font-weight:bold;color:#123783; }
.threadbar A,
.threadbar A:link { color:#123783; }
.threadbar A:visited,
.threadbar A:hover { text-decoration:none;background-
 color:#FFFFFF; }
.threadbardiv { font-weight:bold;color:#123783; }
.threadbarBack { background:#e0e5f5; }

These formatting instructions define the following look and feel:
The thread bar text will be 8 points large and bold
When the mouse cursor hovers over the thread bar text, it will not get
underlined and it will have a white background
The background color of the thread bar is set to the same color code
as the toolbar's background

9. Save the main.css file
10. Launch the Siebel Developer Web Client to test. If the changes are not visible,

use the F5 key to refresh the browser cache.

°

°

°

Chapter 15

[287]

The following screenshot shows the thread bar before the changes:

The next screenshot shows the thread bar after the changes to the main.css file have
been applied:

We can observe that the browser applies the formatting instructions correctly.

Configuring bitmaps and icon maps
The Siebel CRM web applications use graphic files to enhance the visual appearance
of the user interface. Examples of these files are:

The company logo in the upper-right corner
Bitmaps on toolbar buttons and screen tabs
Control icons such as calendar and calculator
Folder icons in hierarchical tree views
Data visualization icons in list and form applets

The graphic files reside in the images folder in the PUBLIC folder of the SWSE or
client installation directory. This is necessary so that the browser can download
them. For easier management of the graphic files, the Siebel Repository contains the
Bitmap Category type, which organizes Bitmap object definitions into categories.Bitmap object definitions into categories. object definitions into categories.

A Bitmap object definition mainly defines the name of the file, which is in turn
referenced in the HTML code rendered by the browser.

•

•

•

•

•

Customizing the Look and Feel of Siebel Applications

[288]

The following screenshot shows the Bitmap Category named HTML Command
Icons, which contains the bitmaps used in the Siebel application toolbars:

An Icon Map is an object definition that associates a bitmap with a value. It can be
referenced by controls and list columns so that, instead of the plain text, a graphic is
displayed in the browser. The property of list columns or controls that defines this
reference is named asas HTML Icon Map.

The following screenshot shows a portion of thefollowing screenshot shows a portion of the screenshot shows a portion of the Order Entry - Order List Applet
(All) applet:

The State column uses a guage to give a graphical representation of the order status.

Case study example: Using an icon map
As defined by AHA business analysts, the AHA Customer Profile Form Applet
should display a graphical indicator to allow employees to determine the level
of courtesy in order to avoid loss of valuable customers. In previous chapters we
have already created the AHA Courtesy Indicator field in the Account businessAHA Courtesy Indicator field in the Account business field in the Account businessAccount business business
component.

In the following example procedure we will use an existing icon map to visualize the
courtesy level in the AHA Customer Profile Form Applet:

1. Navigate to the AHA Customer Profile Form Applet.
2. Check out or lock the applet if necessary.
3. Open the AHA Customer Profile Form Applet in the web layout editor.

Chapter 15

[289]

4. Create a new field control in the Indicators form section with the following
properties:

Name: AHA Courtesy Indicator
Field: AHA Courtesy Indicator
Caption - String Override: Courtesy
HTML Type: PlainText
HTML Icon Map: LS Pharma Market Potential

5. Save and compile the AHA Customer Profile Form Applet.
6. Launch the Siebel Developer Web Client and navigate to the Process

Start View to test your changes. Use the following screenshot to verify
your results:

Test data like High, Low, and Medium has to be entered manually in the
AHA Courtesy Indicator field. This can be achieved by exposing the AHA
Courtesy Indicator field a second time as a standard text field.

We can observe that the icon changes when the AHA Courtesy Indicator field has
different values. The existing icon map named LS Pharma Market Potential which
was chosen for the example, displays different constellations of yellow dollar ($)
signs to represent the values Low, Medium, and High.

°

°

°

°

°

Customizing the Look and Feel of Siebel Applications

[290]

Case study example: Replacing the
application logo
The following example procedure explains how we can replace the Oracle logo in
the upper-right corner of the Siebel CRM application window with our company
logo. The logo graphic file must be 24 pixels in height to fit into the Siebel application24 pixels in height to fit into the Siebel application in height to fit into the Siebel application
banner frame. In the example, we use the file All_Hardware_Logo.png, which is
available with this chapter's code files:

1. Copy the All_Hardware_Logo.png file to the public|enu|IMAGES directory
of the Siebel Developer Web Client installation folder.

2. In Siebel Tools, expose the Bitmap Category object type in the Object
Explorer if necessary.

3. Navigate to the HTML Control Icons bitmap category.
4. Check out or lock the bitmap category.
5. In the Object Explorer, expand the Bitmap Category type and select the

Bitmap type.
6. In the Bitmaps list, create a new record with the following properties:

Name: AHA_LOGO
Filename: All_Hardware_Logo.png
Alt Text—String Override: All Hardware Logo
Comments: Created for AHA prototype

7. Compile the HTML Control Icons bitmap category.
8. Navigate to the WEBTEMPL directory of the Siebel Developer Web Client

installation folder.
9. Create a backup copy of the CCFrameBanner.swt file.
10. Open the CCFrameBanner.swt file in a text editor.
11. Locate the line that contains the following text:

<swe:image name="POWERED_BY"

12. Copy the line and paste it again below itself.
13. Edit the copied text so that it reads as follows (changes are in bold text):

<td align="right"><a href="http://www.all-hardware.com"
 target="_blank"><swe:image name="AHA_LOGO" category="HTML Control
 Icons"/></td>

°

°

°

°

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 15

[291]

The URL www.all-hardware.com only serves as an example.
At the moment of writing this book, the URL was not registered
and should not be used for any productive deployment of Siebel
CRM applications.

14. Position the cursor before the original line and type a comment, without the
closing tag, similar to the following:
<!-- Begin of Customization - AHA Logo

15. Position the cursor at the end of the original line and press Enter to create a
new line.

16. Type a comment closing tag --> so that the original line is now enclosed
in the comment.

17. Enter a comment below the new line to indicate the end of customization.
18. Compare your work with the following screenshot:

The previous screenshot does not show the full text. The file CCFrameBan-
ner.swt is available in this chapter's code files for your reference. In addi-
tion, a Siebel Tools archive file (HTML Control Icons.sif) is available in this
chapter's code file representing the repository changes made in this section.

19. Launch the Siebel Developer Web Client to test your changes. Use the F5 key
to refresh the browser cache if needed.

The following screenshot shows the result of the preceding procedure:

The logo of All Hardware is now displayed in the Siebel application banner frame.
To deploy these changes to test or production servers we must ensure that the image
file, the SWT file, and the repository content are fully deployed.

Customizing the Look and Feel of Siebel Applications

[292]

Summary
There are various techniques to manipulate the look and feel of Siebel CRM
applications. In this chapter, we discussed how SWT files define the visual
appearance of applets, views, and web pages and how customizations can
be applied.

Cascading Style Sheet (CSS) files control the formatting of all elements of a Siebel
CRM application. We learned how to customize CSS files using the thread bar as
an example.

Graphic files are used to enrich the user experience in the browser application. In
this chapter, we learned how to work with bitmap categories and icon maps, and
how to customize the application logo.

In the next chapter, we will learn how to configure menus and buttons in Siebel
CRM applications.

Menus and Buttons
The Siebel event framework allows developers to implement simple or complex
processes and provide user interface elements such as menus and buttons to the end
user. In this chapter, we will learn how the Siebel event framework works and how
to configure buttons and menus in Siebel CRM applications.

The chapter is structured as follows:

Understanding the Siebel event framework
Creating applet buttons
Configuring command objects
Configuring application menu items
Configuring toolbar buttons
Configuring applet menu items

Understanding the Siebel event
framework
To understand how the Siebel application engine processes events such as a click
on a button or a menu item, we can inspect one of the various pre-built objects in
standard Siebel CRM applications.

A commonly used button in Siebel CRM applications is the Site Map button. End
users frequently navigate to the site map to access screens and views. Navigation
to the site map can be triggered by clicking the Site Map command in the Navigate
menu, pressing Ctrl+Shift+A on the keyboard, or by clicking the toolbar button with
the globe icon.

•
•
•
•
•
•

Menus and Buttons

[294]

In Siebel Tools, we can execute a procedure similar to the following to inspect the
definition for the Site Map menu item and toolbar button:

1. Expose the Command, Menu, and Toolbar object types in the Object
Explorer if necessary.

2. In the Object Explorer window, select the Menu type.
3. In the Object List Editor, select the Generic WEB menu.
4. In the Object Explorer, expand the Menu type and select the Menu

Item type.
5. Use the Caption column to query for the menu item labeled Site Map.
6. Inspect the Command property and observe that the Command object

definition used by the menu item is named Sitemap.
7. In the Object Explorer, select the Flat tab.
8. In the Flat tab, select the Toolbar Item type.
9. Use the Display Name column to query for toolbar items that are labeled

Site Map.
10. Observe that there are various instances (in different toolbar definitions) but

they all refer to the same command object named Sitemap.
11. In the Object Explorer, select the Types tab to go back to the hierarchical

object list.
12. Navigate to the Command object named Sitemap.
13. Inspect the Method property and observe that the method invoked by this

command is named GotoPage. When invoked, this method navigates to a
web page object in the browser.

14. Inspect the Method Argument property and observe that the name of the
web page is CC Site Map.

15. In the Object Explorer, expand the Command type and select the
Accelerator type.

16. Observe that the Key Sequence property is set to Ctrl+Shift+A. This defines
the keyboard shortcut.

We have completed the inspection of the menu item and the toolbar button that
navigates to the Siebel application's site map page. We have learned that command
object definitions are referenced by menu items and toolbar buttons alike. The
command object defines the method or action to be invoked as well as the
keyboard accelerator. We will learn more about command object definitions
later in this chapter.

Chapter 16

[295]

Event handling in Siebel applications
There are many circumstances during which the Siebel application must react to
events that are not directly triggered by end users. For example, an external interface
could update hundreds-of-thousands of records during a nightly batch and it is
required to validate these updates before they are committed to the database.

It is therefore necessary to extend the concept of events and how they are handled to
the business logic layer. The engineers at Siebel Systems have created the Siebel event
framework, which allows them and custom developers to intercept any event before
and after the execution of the Siebel C++ code that implements the event handler.

In continuing our example scenario, the standard behavior of Siebel applications is that
once a record is updated (and left or saved), the changes are written to the database.

A diagram that depicts this flow would look like the following:

With a fixed flow like the previous one, any additional logic would require editing
the C++ code, which is not feasible in Siebel CRM. Instead, Siebel engineers have
provided event handlers before and after the internal C++ code is executed, so the
diagram in fact looks more like this:

In Siebel terms, the event handlers that are executed before the internal Siebel C++
code are called Pre event handlers whereas the ones that are executed after the C++
code are called Post event handlers. Pre event handlers also provide the ability to
cancel the execution flow, for example when the validation result is negative—thus
avoiding the execution of the Siebel C++ code.

Event handlers can be implemented at different levels such as the browser,
server instance of an applet, and the business component level. Developers can use
techniques such as runtime events, scripting, and user properties to implement
custom event handlers.

Menus and Buttons

[296]

The following table describes the possible implementation technology for each level
of event handler:

Technology →
Level ↓

Event
Handler

Runtime
Events

Scripting User Properties

Browser Applet Pre No Yes (Browser Script) No
Server Applet Pre Yes Yes (Server Script) No
Business Component Pre Yes Yes (Server Script) No
Business Component Post Yes Yes (Server Script) Yes (Named Method)
Server Applet Post Yes Yes (Server Script) Yes (Named Method)
Browser Applet Post No Yes (Browser Script) No

It is important for Siebel developers to understand the sequence of event handler
invocation. For example, any runtime event defined for a business component will
be executed before any script associated with the business component. With the
information from the preceding table we can derive the following flow diagram:

Chapter 16

[297]

From the preceding diagram we can learn the following:

Pre event handlers are executed before the internal C++ code for the business
component
Post event handlers are executed after the business component code
Browser-side Pre event handlers are executed before server-side event
handlers
Applet Pre event handlers are executed before business component event
handlers
Runtime events are executed before scripts
The Named Method user property can be used to handle Post events on the
server side for business components and applets
Post event handlers are executed in reverse order of Pre event handlers with
business component event handlers being executed before applet server-side
event handlers

We will learn more about event handlers, runtime events, and scripting in upcoming
chapters of this book. In the remainder of this chapter, we will focus on user
interface elements such as buttons and menu items, which are mostly based
on user properties.

Controlling method invocation
There are circumstances when we do not wish that a method can be executed by the
user. For example, a record that has not been created by the current user should be
prevented from deletion. The respective menu items and buttons should be inactive
or grayed out.

The Siebel event framework has a special event handler named CanInvokeMethod
that allows us to control the activation or deactivation of methods and therefore the
active or grayed out state of menu items and buttons.

The CanInvokeMethod event is triggered every time a different record is selected
to provide context sensitivity at the record level. The Siebel event framework then
determines whether it can invoke the method, hence the name "CanInvokeMethod",
for the current record. The event handler is executed once for each method exposed
on the current view. This includes methods invoked by application menu items and
toolbar buttons as well as all applet menu items and applet buttons.

Developers can use script in the PreCanInvokeMethod event handler or user
properties to provide logical instructions when to allow the invocation of a
specific method or not.

•

•
•

•

•
•

•

Menus and Buttons

[298]

Custom methods, in particular, which are not pre-registered in the Siebel event
framework, must be made known to the Siebel application so that buttons or menu
items that refer to these methods become active and clickable.

The case study examples in the following sections describe the techniques for
registering custom methods with the Siebel event framework.

Creating applet buttons
At the beginning of this chapter, we discussed how menu items and toolbar buttons
use command object definitions to invoke methods that are then handled by the
Siebel application's event framework.

Applet buttons are different from menu items and toolbar buttons in a sense that
they specify the method to be invoked directly in their own MethodInvoked
property. They do not use command objects.

Case study example: Creating a custom
applet button that invokes a workflow process
As described in Chapter 3, Case Study Introduction the AHA business analyst team has
put forth the requirement to create orders for business customers directly from the
AHA Customer Profile Form Applet by means of a button click. The button should
only be clickable when the customer type is Business.

The AHA technical architect team has inspected the preconfigured Siebel
applications and found that the required behavior is available in the standard
applications by means of the Account - New Order workflow process. The only
additional configuration would be the dynamic activation or deactivation of
the button.

The following procedure describes how to create a custom applet button that invokes
the Account - New Order workflow process and how to control the state of the
button depending on the customer type:

1. Navigate to the AHA Customer Profile Form Applet.
2. Check out or lock the applet if necessary.
3. Open the applet in the web layout editor.
4. Drag a MiniButton control from the Palettes window to the first placeholder

(marked with an x) after the Query Assistant button.

Chapter 16

[299]

5. In the Properties window enter the following values for the new button:
Name: AHA Order Button
Method Invoked: AHANewOrder
Caption: New Order

6. Save the changes and close the web layout editor.
7. In the Object Explorer, expand the Applet type and select the Applet User

Prop type.
8. In the Applet User Props list, create a new record with the following values:

Name: CanInvokeMethod: AHANewOrder
Value: [Type] = LookupValue("ACCOUNT_TYPE", "Business")

The preceding new applet user property ensures
that any user interface element that exposes the
AHANewOrder method is grayed out unless the
language independent value in the Type field of
the Account business component is Business. The
LookupValue() function should be used for any
field that is associated with a static pick list in order to
ensure language independency of the repository objects.

If we wish to constantly keep the button enabled, we can simply set the
Value of the applet user property to TRUE.

9. Compile the AHA Customer Profile Form Applet.
10. Navigate to the Account business component.
11. Check out or lock the business component if necessary.
12. Navigate to the list of business component user properties for the Account

business components.
13. Execute a query with Named Method* as the search string to retrieve all user

properties for named methods.
14. Inspect the list and find the active user property with the highest sequence

number.

In Siebel Industry Applications 8.1.1 this is the
Named Method 26 user property.

15. Copy the record for the Named Method 26 user property and rename the
copy to Named Method 35.

°
°
°

°
°

Menus and Buttons

[300]

As discussed in Chapter 13, we can leave a gap of nine to
avoid conflicts with user properties defined by Oracle
engineering in future versions of Siebel CRM.

16. Edit the Value column of the new user property to look as follows (changes
are highlighted as bold text):
"AHANewOrder", "INVOKESVC", "Account", "Workflow Process Manager",
"RunProcess", "'ProcessName'", "Account - New Order", "'RowId'",
"[Id]"

This user property value defines that when the
AHANewOrder method is invoked on the Account business
component, the Account - New Order workflow process is run
with the current record's ROW_ID value.

17. Set the Comments column for the new user property to Created for AHA
prototype.

18. Compile the Account business component.
19. If you are using the Siebel Sample Database to follow the case study

examples, the following steps are not necessary.
20. Navigate to the Account - New Order workflow process in Siebel Tools.
21. Expose the WF/Task Editor Toolbar in the Siebel Tools toolbar area if

necessary by right-clicking anywhere in the toolbar area and selecting
the toolbar.

22. Click the Publish/Activate button in the WF/Task Editor Toolbar to publish
and activate the Account - New Order workflow process.

23. Repeat step 21 for the Goto_Order workflow process. This workflow process
is a subprocess in the Account - New Order workflow process.

24. Launch the Siebel Mobile or Developer Web Client and navigate to the AHA
Process Start View.

25. Create a test account record without setting the Type field.
26. Observe that the New Order button is grayed out.
27. Set the type of the test account to Business and press Tab to leave the field.
28. Observe that the New Order button is now clickable.
29. Click the New Order button.

Chapter 16

[301]

30. Observe that the application creates a new service order and navigates to the
Order Entry - Detail Orders View as a result of the workflow execution.

Did you know?
It is a recommendable practice to handle the method invocation on the
business component level rather than the applet level as shown in the
previous example procedure. By obeying this recommendation, we
ensure that the business logic resides in the correct application layer and
that only a minimum of configuration is necessary to provide the same
functionality on other applets.

The file User Properties.txt in this chapter's code file contains the names and
values for the user properties created in the preceding example procedure. The
reader may find it convenient to copy and paste the text from the file to Siebel Tools.

Configuring command objects
When we wish to create menu items in the application or applet menus or toolbar
buttons, we must start with configuring command objects. A command object, as
shown earlier in this chapter, is a reusable object definition that is referenced from
the aforementioned user interface elements. Command objects can invoke one of
the following:

Method and arguments: The method must be handled on the application,
applet, or business component layer
Business service, method, and arguments: Business services are reusable
programs defined in the Siebel Repository
Pop-up applet: When the command is invoked, an applet is loaded in a
popup window

•

•

•

Menus and Buttons

[302]

The following table describes the most important properties of the Command
object type:

Property Description
Business Service When this property is set to the name of a business service,

the command invokes the business service's method (defined
in the Method property) with the list of arguments defined in
the Method Argument property.

Method When the Business Service property is empty, this property
references the name of a method that is handled by the
application, applet, or business component layer objects.

Method Argument Input arguments for the method. For example, the GotoUrl
method requires a method argument like URL=http://
someserver.com.

Show Popup When set to TRUE, the command invokes the creation of a
new pop-up window. Used for special applets such as About
View and often with the GotoApplet method.
The Method Argument property is used to specify the applet
mode and name.

HTML Popup Dimension Specifies the size of the popup applet when Show Popup is
set to true.

Display Name Used as the label for the invoking object (menu item or
toolbar button) when the object itself has no label defined.

HTML Bitmap References a bitmap that is displayed on the toolbar button
that references the command. The bitmap will be displayed
when the method can be invoked and the toolbar button is
clickable.

HTML Disabled Bitmap References a bitmap that is displayed in the grayed out state.
Bitmaps referenced by command object definitions must
reside in the HTML Command Icons bitmap category.

Target Specifies which application layer handles the method
invocation. Valid values are Server, Browser, Service, and
Active Applet.

Accelerators
Command objects can be associated with Accelerator child object definitions.
Accelerators define the keyboard shortcuts that the end user can use to invoke
the command without the need to use the mouse.

Chapter 16

[303]

For easier identification of the respective keyboard shortcuts, menu items always
display the keyboard shortcuts implemented by the command's accelerator as shown
in the following screenshot:

The Navigate menu of the Siebel CRM application displays the keyboard shortcuts
such as Ctrl+Shift+A for the Site Map command in the right half of the menu.

Case study example: Creating a command
with an accelerator
As defined in Chapter 3, AHA end users should be able to navigate quickly to the
AHA Customer Process Start View by means of a keyboard shortcut or toolbar
button. The following example procedure demonstrates how to implement this
requirement:

1. Navigate to the Command object type in Siebel Tools.
2. In the Commands list, create a new record with the following

property values:
Name: AHA Process Start View
Project: AHA User Interface
Display Name - String Override: Go to Process Start View
HTML Bitmap: Home
Method: GotoView
Method Argument: AHA Customer Process Start View
Target: Server
Comments: Created for AHA prototype

°
°
°
°
°
°
°
°

Menus and Buttons

[304]

3. In the Object Explorer, expand the Command type and select the
Accelerator type.

4. In the Accelerators list, create a new record with the following property
values:

Name: 1
Display Name - String Override: Alt+H
Key Sequence: Alt+H

5. Compile the AHA Process Start View command.

Did you know?
We can use the Object Explorer's Flat tab to list all Accelerator
object definitions. We can then use queries to identify whether the
desired keyboard shortcut is still available.
When choosing a keyboard shortcut, we must ensure that it is
not yet occupied and that it does not interfere with the browser's
keyboard shortcuts.

Case study example: Configuring
application menu items
The command we created in the previous section can now be associated with menu
items and toolbar buttons. The following example procedure describes how to
associate a command with an application menu item:

1. Navigate to the Generic WEB menu.
2. Check out or lock the menu if necessary.
3. In the Object Explorer, expand the Menu type and select the Menu

Item type.
4. In the Menu Items list, create a new record with the following

property values:
Name: AHA Navigate - Process Start View
Caption - String Override: Go to Process Start View
Command: AHA Process Start View
Position: 4.25 (leaving a gap of 10 to the highest position
number starting with 4.)

Comments: Created for AHA prototype

°
°
°

°
°
°
°

°

Chapter 16

[305]

5. Compile the Generic WEB menu.
6. In the Developer Web Client, open the Navigate menu and verify that a new

menu item labeled Go to Process Start View [Alt+H] exists at the bottom of
the menu.

7. Click the new menu item.
8. Observe that the AHA Customer Process Start View is open.
9. Navigate to the Home Page View.
10. Press Alt+H.
11. Observe that the AHA Customer Process Start View is open.

Case study example: Configuring toolbar
buttons
The following procedure describes how to create a new toolbar button that uses the
command created previously in this chapter:

1. Navigate to the HIMain toolbar.
2. Check out or lock the toolbar if necessary.
3. In the Object Explorer, expand the Toolbar type and select the Toolbar

Item type.
4. In the Toolbar Items list, create a new record with the following

property values:
Name: AHA Process Start View
Command: AHA Process Start View
Display Name - String Override: Go to Process Start View
HTML Type: Link
Position: 17 (leaving a gap of 10 to the highest existing position
value)
Comments: Created for AHA prototype

5. Compile the HIMain toolbar.
6. In the Developer Web Client, verify that a new toolbar button, with a house

icon, appears to the right of the Site Map button.
7. Click the new toolbar button and verify that the AHA Customer Process

Start View is open.

°
°
°
°
°

°

Menus and Buttons

[306]

A Siebel Tools archive file (Command_Menu_Toolbar.sif) is available with this
chapter's code file. The file represents the command, menu, and toolbar definitions
created or modified in the previous section.

Case study example: Configuring applet
menu items
We can consider adding all available functionality to an applet's menu. By adding
this, we ensure that end users can always find a list of available commands by
clicking the Menu button or right-clicking in the applet.

The following example procedure describes how to add an applet menu item to the
AHA Customer Profile Form Applet using the web menu editor. We will use a copy
of a preconfigured command object definition to provide the functionality of creating
a new order for the selected customer record:

1. Navigate to the Account-New Order command.
2. Copy the Account-New Order command and rename the copy to

AHA New Order.
3. Change the Project property to AHA User Interface.
4. Change the Method property to AHANewOrder.
5. Compile the AHA New Order command.
6. Navigate to the AHA Customer Profile Form Applet.
7. Check out or lock the applet if necessary.
8. Right-click the AHA Customer Profile Form Applet and select

Edit Web Menus.
9. In the web menu editor, double-click the New Item entry.
10. In the Menu Item Properties dialog, enter the following values:

Menu text: New Order
Invoke Command: AHA New Order

11. Compare your work with the following screenshot:

°
°

Chapter 16

[307]

12. Click OK.
13. Save and close the web menu editor.
14. Compile the AHA Customer Profile Form Applet.
15. Test your changes in the Developer Web Client and verify that the applet

menu of the AHA Customer Profile Form Applet now contains a new menu
item labeled New Order. The menu item will only be clickable when the type
of the customer is Business.

Summary
The Siebel event framework provides various possibilities for developers to create
user interface elements such as menu items and buttons. In this chapter, we studied
the functionality of the Siebel event framework as well as the configuration of
command objects that support menu items and toolbar buttons.

We also learned how to control the activation or deactivation of menu items and
buttons via the CanInvokeMethod event handler and how to use the Named Method
business component user property to handle method invocations.

In the following chapter, we will discuss the concept of Siebel business services.

Business Services
Whether we download data from a Siebel list applet to a file or view the price
waterfall for a discounted order item, Business Services provide the majority of
logic and functionality in Siebel CRM applications. In this chapter, we will discuss
the concept of business services and learn how to explore the functionality of
preconfigured standard business services.

The chapter is structured as follows:

Understanding Business Services
Preconfigured Business Services
Testing Business Services

Understanding business services
A business service can be understood as a program that provides a predefined set of
functions. A function, in general programming terminology, is a part of a program
and has defined input and output parameters. Business services are defined in the
Siebel Repository and contain methods, which themselves have input or output
method arguments.

•
•
•

Business Services

[310]

The following diagram compares Siebel Business Services with general
programming terms:

We can use Siebel Tools to inspect the structure of the business services, which could
be either delivered with the Siebel out of the box repository or written by custom
developers.

To do so, we navigate to the Business Service type in the Object Explorer and select
the desired business service from the list. When we expand the Business Service
type, we can inspect the methods and by expanding the Business Service Method
type, we can inspect the input and output arguments of each method.

Developers who take a first look at the impressive list of hundreds of preconfigured
business services often find themselves discouraged in their quest for understanding
the logic behind these services.

There are several reasons to feel intimidated. For example, many business services
simply have no defined methods, nor arguments. Many of them lack a description
and even a search in the Siebel bookshelf does not provide greater insight.

On the other hand, many of the preconfigured business services in the Siebel
Repository are well described and the approach to understand them is the opposite
of spending hours of fruitless scrolling in Siebel Tools. These preconfigured business
services are described in detail across various bookshelf documents. So the ambitious
developer may be confronted with a business service only while working in a
specific area of Siebel applications. Examples for such areas are:

Enterprise Application Integration (EAI)
Siebel Order Management
Siebel Marketing and Loyalty

•
•
•

Chapter 17

[311]

Data Validation
Siebel Financial Services
Universal Customer Master (UCM)

We will describe some of the most important preconfigured Siebel business services
later in this chapter.

Most preconfigured business services are implemented as C++ classes, so their code
is not visible to the Siebel Tools user. Custom developers can use Siebel eScript
(a variant of ECMA script and similar to JavaScript) to implement custom
business services. We will discuss how to write custom business services in
eScript in a later chapter.

Invoking business service methods
When we have decided to use a business service, we must know how to invoke its
methods, pass the necessary input arguments, and retrieve the output arguments. To
facilitate method invocation and output retrieval, the Siebel framework provides a
proprietary data type called Property Set.

As the name suggests, a property set is a set of properties—another name for an
array of arguments. In addition, a property set can contain an arbitrary number of
child property sets, allowing for the creation of hierarchical data structures.

The following diagram describes the structure of a property set:

From the preceding diagram, we can learn the following:

A property set has two properties with fixed names—Type and Value
A property set can have an arbitrary number of additional freely named
properties

•
•
•

•
•

Business Services

[312]

A property set can have an arbitrary number of child property sets
Child property sets can have children themselves and the number of
generation levels is not limited

When we use Siebel workflow to invoke business service methods, the Siebel
framework dynamically generates property sets in memory. Developers who write
scripts to work with business services can use methods defined by the Siebel object
interfaces API to generate property sets. We will discuss Siebel workflow and
scripting later in this book.

Each business service method has a specific set of input and output arguments. To
invoke the method, we must prepare a property set, called the input property set,
which contains at least the input arguments defined by the method. The business
service method will produce a so-called output property set, which contains the
output arguments with the computed values as defined by the method.

To illustrate this, we can use the Eliza business service, which is a sample
preconfigured business service written in eScript.

Did you know?
Eliza is a famous computer program written by Joseph Weizenbaum in
the 1960s. Its purpose is to demonstrate natural language processing by
passing an answer or question back on each input. (Source: Wikipedia—
http://en.wikipedia.org/wiki/ELIZA)

The following procedure guides us through an inspection of the Eliza
business service:

In the Object Explorer, select the Business Service type.
In the Business Services list, query for the business service named Eliza.
In the Object Explorer, expand the Business Service type and select the
Business Service Method type.
Observe that the Eliza business service has one method named Analyze.
In the Object Explorer, expand the Business Service Method type and select
the Business Service Method Argument type.
Observe that the Analyze method has one input argument named
InputMessage and one output argument named OutputMessage.
The following screenshot shows the arguments for the Analyze method of
the Eliza business service:

•
•

1.
2.
3.

4.
5.

6.

Chapter 17

[313]

7. In the Object Explorer, select the Business Service type.
8. Right-click the Eliza business service and select Edit Server Scripts.
9. Inspect the eScript code in the script editor. The code is shown in the

following screenshot:

The code of the Eliza business service does the following:

Reads the InputMessage argument from the Inputs property set and assigns
the value to a variable named msg
Concatenates the string "What do you mean by" with the value of the msg
variable and assigns the result to a variable named outMsg
Sets the value of the OutputMessage property in the Outputs property set to
the value of the outMsg variable
Returns to the calling instance, canceling all subsequent event handling

As indicated previously, not all preconfigured business services are written in plain
eScript code. The inspection of the code is put here for learning purposes only.

We now have a better understanding of how business services work. To invoke
the Analyze method of the Eliza business service we would have to create an
input property set with a single property named InputMessage with a value of,
for example, "Hello". After invocation of the Analyze method we will be able to
retrieve the value of the OutputMessage property from the output property set. Its
value would be "What do you mean by Hello?", the result of the text concatenation
that took place in the Analyze method.

•

•

•

•

Business Services

[314]

It is not necessary to have access to the code behind a business service method
as long as the developer has declared all methods and their input and output
arguments as child object definitions of the business service.

Did you know?
Being able to use a service without having to know
the underlying code is one of the main principles
of a service-oriented architecture (SOA).

We can invoke business service methods from a large variety of interaction points
from within the Siebel application framework and from external applications. The
following is a list of the most important invocation techniques:

Business Service step in a Siebel workflow process
InvokeMethod function in Siebel scripting
Command object definition (used by menu items and toolbar buttons)
Named Method user property (on applets and business components)
Action set (used by runtime events)
Expressions in Siebel Query Language (for example, in calculated fields or
personalization, using the InvokeServiceMethod() function)
From EAI Receivers and the EAI Dispatch Service
External programs (Java, COM, .NET)
External SOAP requests (Inbound Web Services)

In upcoming chapters of this book, we will discuss the concepts of Siebel workflow
processes and scripting in greater detail.

Preconfigured business services
The Siebel Repository for Siebel Industry Applications (SIA) 8.1.1 contains more
than 1,200 preconfigured business services. While most of them are for internal use
by Oracle engineering only, there are many business services that are documented
explicitly for use by custom developers. Because Oracle describes the business
services and their methods in context with their originating functional area, there is
no official comprehensive list of business services available. However, information in
the Oracle Siebel documentation library is well organized and can be searched online
with Google (http://www.google.com) or Oracle Search (http://search.oracle.
com). For example, a list of business services related to Enterprise Application
Integration (EAI) can be found in the Integration Platform Technologies guide in
the Siebel bookshelf (http://download.oracle.com/docs/cd/E14004_01/books/
EAI2/EAI2_PredefinedEAI2.html).

•
•
•
•
•
•

•
•
•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 17

[315]

The list of business services that we can display in Siebel Tools should be seen as
the library of out of the box application functionality. It is among our duties as
developers to acquaint ourselves with that library. By using existing functionality
rather than developing our own code, we can significantly reduce effort, costs, and
risks for our project.

The following table describes some of the most important preconfigured business
services in alphabetical order. The list only references business services of generic
nature, leaving out the hundredfold of application-specific services we find in the
Siebel Repository:

Business Service Functional Area Description
Asynchronous Server
Requests

Server Requests By using this business service,
developers can issue job requests
for any batch server component
programmatically. The calling code
will not wait for the return of the
methods.

Data Validation Manager Data Validation This business service consumes
data validation rule sets (entered
in administrative views in the
web client), interprets the rule
expressions (in Siebel Query
Language), and invokes the defined
action (for example, message
display) when rule validation fails.

EAI Data Transformation
Engine

EAI, Data
Mapping

Can be used to map between internal
and external representations of
business data.

EAI File Transport EAI The Send method of this and other
Transport business services writes the
content of the Value input property
to the destination.

EAI Siebel Adapter EAI, Data Access This is the universal adapter service
for any EAI-based data access.

EAI XML Converter EAI Used to convert a Siebel proprietary
hierarchical property set to an XML
document and vice versa.

EAI XSLT Service EAI Allows developers to utilize XSLT
(XML Stylesheet Transformation)
files for advanced data mapping.

Business Services

[316]

Business Service Functional Area Description
Outbound Communications
Manager

Communications Interacts with the Communications
Outbound Manager server
component to implement multi-
channel communication such as e-
mail or fax.

PRM ANI Utility Service Utilities Contains various methods for
property set manipulation and other
helper functions.

Read CSV File EAI Converts the contents of a CSV
(comma separated values) file to a
hierarchical property set.

Row Set Transformation
Toolkit

Order
Management

A universal service to manipulate
data sets in memory. Used mainly
in the product selection and pricing
workflows.

SIA BC Utility Service Utilities Provides methods to invoke methods
on business components.

Spell Checker Utilities Allows execution of spellcheck
functionality on any input text.

Synchronous Server Requests Server Requests Similar to the Asynchronous Server
Requests business service. The caller
will wait for the return.

Unified Messaging Service Utilities Interacts with the Unified Messaging
Framework to generate messages
and process the user response.

Universal Inbox Utilities Allows developers to populate and
manipulate data in the user's inbox.

Usage Tracking Service Utilities Tracks access to Siebel views and
writes information to files.

Workflow Process Manager System This business service executes
workflow process definitions.

Workflow Utilities Utilities Contains various methods that are
useful for workflow development.

XML Gateway EAI Used primarily for virtual business
components (VBCs) that allow data
access to external systems.

Chapter 17

[317]

Business Service Functional Area Description
All business services with
class CSSEAIDataSyncService

EAI Business services of that class are
also known as Application Services
Interfaces (ASIs) and serve as
encapsulated data synchronization
interfaces. They are often exposed as
inbound web services.

All business
services with class
CSSWSOutboundDispatcher

EAI Business services of that class are
known as proxy business services
and implement outbound web
services.

Testing business services
Developers who wish to acquaint themselves can, besides reading the
documentation, use the Business Service Simulator view in the
Administration - Business Service screen of the Siebel Web Client.

This view allows creation or upload of an input property set for the chosen business
service method, execution of the method, and inspection or download of the output
property set.

It must be noted that we should not be led into false assumptions by the
name Simulator. Whatever the code behind the business service method is
programmed to do, it will be executed without the possibility to roll back
the changes made by the code.

The following example procedure describes how to test the Spell Checker business
service. The process of testing other preconfigured or custom business services
is similar:

1. Log in to the Siebel Mobile Web Client, connecting to the sample database,
using SADMIN as username and password.

2. Navigate to the Site Map.
3. Navigate to the Administration - Business Service screen, Simulator view.
4. In the upper list applet, create a new record.
5. Enter Spell Checker as the Service Name and OpenSession as the Method

Name.

Business Services

[318]

The Input Arguments list in the middle of the view allows us to create
input property sets. The input arguments for the OpenSession method are
Language ID and User ID. We can derive this information from the Business
Service Method Arg list in Siebel Tools.

6. In the Input Arguments list, create a new record and enter 1 in the Test Case
field.
Use the Tab key to navigate through the columns of the record and observe
that we can enter values for the Value and Type properties. The Child Type
column is a multi value field that allows us to enter child property sets. The
Property Name column is also a multi value field that allows us to create an
array of properties.

7. Click the select button in the Property Name column.
8. In the Property Set Properties applet, create a new record and enter

Language ID in the Property Name field and ENU in the Value field.
9. Create a second record in the Property Set Properties applet and enter User

ID as the property name and SADMIN as the value.
10. Compare your work with the following screenshot:

The preceding screenshot shows the Property Set Properties applet with
two properties—User ID and Language ID – and their values. These two
properties are now part of an input property set for test purposes.

11. Click the OK button to close the Property Set Properties window.
12. In the upper list applet, click the Run on One Input button to execute

the OpenSession method of the Spell Checker business service with the
currently selected input property set. This establishes a new session for the
Spell Checker service. We can now use the session to execute a spellcheck on
a sample text.

Chapter 17

[319]

13. In the upper list applet, create a new record and specify Spell Checker as
the Service Name and SubmitRequest as the Method Name.

14. In the Input Arguments list applet, create a new record and enter 2 as the
test case number.

15. Click the select button in the Property Name column.
16. In the Property Set Properties applet, create a new record and enter Text

in the Property Name field and enter the following text in the Property
Value field:
This text has a prroblem.

Note that we enter the word prroblem wrong
on purpose.

17. Click the OK button to close the Property Set Properties window.
18. Ensure that the record with test case number 2 is selected.
19. In the upper list applet, click the Run on One Input button.
20. Observe the new record in the Output Arguments list applet at the

bottom of the view. The record represents the output property set of the
SubmitRequest method of the Spell Checker business service.

The output property set can be viewed by clicking the select buttons in the Child
Type and the Property Name columns to see the child property sets and the property
array respectively. It is also possible to click the Save to File… button on the Output
Arguments list applet to save the entire output property set to an XML file.

The following screenshot shows the XML representation of the output property set
created by the SubmitRequest method of the Spell Checker business service:

We can observe that the output property set contains two properties (ErrorWord
with a value of prroblem and ErrorPosition with a value of 16) indicating that the
first word with spelling errors in the input text occurs after the 16th character.

Business Services

[320]

In addition, the output property set contains a child property set of Type
Suggestions, which contains five properties with suggested spellings and a number
indicating the likelihood of being the best suggestion. The problem property has a
value of 97, which is the highest value given.

An end user would now press a button to invoke another method of the Spell
Checker service, for example to allow the Spell Checker service to change the wrong
word to the correct spelling.

We can investigate how the Spell Checker business service is embedded in Siebel
CRM by visiting the Public Notes view in the Accounts screen. The notes list applet
hosts a Check Spelling button which invokes the Spell Checker business service and
passes the note text. The following screenshot shows the spell checking functionality
in the Public Notes view of the Accounts screen in the Siebel Web Client:

The Spelling dialog allows an end user to identify incorrect spelling and correct it
using the Change or Change All button.

As indicated previously, the Spell Checker business service is just one among
hundreds of preconfigured business services. It is a good example of encapsulating
reusable functionality that goes beyond simple data manipulation.

Chapter 17

[321]

Case study example: Invoking a business
service method from a runtime event
As indicated in Chapter 3, Case Study Introduction AHA has the requirement of
tracking all view hits to be able to identify frequently used views and to provide data
for business process management. The preconfigured Usage Tracking Service has
been identified as the solution for this requirement.

The solution also includes the use of the runtime event architecture that has been
introduced in Chapter 16, Menus and Buttons. We will however discuss how runtime
events work in more detail in the following section.

Runtime events
As indicated in Chapter 16, we can use runtime events to handle events in Siebel
applications. We can understand runtime events as a means to registering distinct
events such as a method invocation on a business component or applet with an
action set. An action set, as the name suggests, is a set of discrete actions that can be
one of the following:

Invoke a business service method and pass input arguments
Set a profile attribute (a variable that is available from server and
browser-side code)
Invoke a method on the object that experienced the event

Action sets and runtime events are registered in the Administration - Runtime
Events screen in the Siebel Web Client. The following diagram describes the
architecture of runtime events:

When the event occurs, the Siebel application identifies the registered instances
of this event and invokes the actions in the associated action set in the specified
sequence.

•
•

•

Business Services

[322]

The following procedure describes how to enable the tracking of view hits by
associating the Usage Tracking Service with the ViewActivated event of the
Siebel application layer. Because the Usage Tracking Service is only available for
application object manager server components, we must execute the tasks in the
procedure on a Siebel Web Client, connected to the Siebel Server infrastructure:

1. Log on to the Siebel Web Client using an administrative user account.
2. Navigate to the Administration - Runtime Events screen, Action Sets view.
3. Create a new action set named Usage Collection.
4. In the second list applet from the top, click the New button to create a new

action definition.
5. Set the Name and Sequence fields to 1.
6. Set the Type field to BusService.
7. In the form applet at the bottom of the view, enter Usage Tracking Service

in the Business Service Name field.
8. Enter EventType=Runtime Event in the Business Service Method field.
9. Navigate to the Events view in the Administration - Runtime Events screen.
10. Create a new record and set the Sequence field to 2.
11. Set the Object Type field to Application.
12. In the Object Name field, click the select button and select the technical name

of the application you are using, for example Siebel Sales Enterprise.

Did you know?
If you are unsure about the technical application name,
you can look up the value of the ApplicationName
parameter in the Siebel Developer Web Client's
configuration file (.cfg). The .cfg file is typically
referenced in the Windows shortcut by the /c switch.

13. In the Event field, enter ViewActivated.
14. Set the Action Set Name field to Usage Collection (the name of the action set

created earlier).
15. Navigate to the Administration - Application screen, System

Preferences view.
16. Set the system preferences for Siebel Usage Collection according to the

following table.

Chapter 17

[323]

Setting system preferences is specific for the Usage
Tracking Service.

System Preference Description Example Value
UsageTracking Enabled Controls whether Usage

Tracking is enabled.
TRUE

UsageTracking Log Time
Period

Defines the interval for how
often a new file is created.
Possible values are Hourly,
Daily, Weekly, and Monthly.

Daily

UsageTracking LogFile Dir The directory where usage
tracking log files will be written
to. Should be a shared directory
for a multi-server installation.

\\appserver1\usage

UsageTracking LogFile
Format

Allows specification of the
output format of the log files.
Possible values are XML, CSV,
and W3C.

XML

Source: Siebel Content Publishing Guide, Version 7.8: http://download.oracle.
com/docs/cd/B31104_02/books/ContentPub/booktitle.html

17. Restart the application object manager component.

To verify the correct setup of Siebel Usage Collection, we can log in to the Siebel
Web Client and navigate to several views. After a few minutes, an XML file should
be present in the directory specified by the UsageTracking LogFile Dir system
preference.

The following screenshot shows a portion of the Siebel Usage Tracking log file in
XML format:

Business Services

[324]

The entries in the file indicate the user name, IP address of the client machine, the
time of accessing and leaving the view, and the view name.

Summary
Business Services constitute the majority of Siebel CRM functionality. In this chapter,
we learned how business services, their methods, and the property set memory
structures work.

By using preconfigured business services, we can leverage existing functionality
without the need to implement custom code. We can use the business service
simulator to acquaint ourselves with the preconfigured functionality.

Business service methods can be invoked in various ways, of which workflow
process steps and runtime events are the most common. In this chapter, we
learned how to invoke a business service method from a runtime event.

In the next chapter, we will learn how to use integration objects to support
integration interfaces.

Supporting Integration
Interfaces

This chapter introduces the major objects of the interface layer of Siebel CRM
applications, namely Integration Objects. Because they are widely used in reports,
standard Enterprise Application Integration (EAI) connectors, web service
interfaces, and custom EAI interfaces, a developer must understand these object
types. In this chapter, we will learn how to configure integration objects to be able
to support integration interfaces.

The chapter is structured as follows:

Understanding integration objects
Creating internal integration objects
Defining integration component keys
Testing integration objects
Advanced settings for integration objects

Understanding integration objects
What we have learned so far in this book is generally aimed at providing an interface
for users that allows them to interact with data and functionality provided by the
business layer of Siebel CRM applications. While screens, views, and applets provide
the human interface, integration objects provide the EAI interface.

•

•

•

•

•

Supporting Integration Interfaces

[326]

The following diagram illustrates this:

From the preceding diagram, we can learn the following:

Views and applets constitute the user interface for human interaction with
the data and functionality provided by business components.
The business layer, constructed by business objects and business
components, is the single point of access for users and EAI interfaces. The
business layer defines the logic for accessing the tables in the Siebel database.
Integration objects and integration components constitute the integration
layer by mapping to business objects and business components respectively.
The EAI Siebel Adapter business service serves as the unique access point
for external systems to deliver outgoing data and process incoming data.
EAI Siebel Adapter uses the information in integration objects to invoke
methods on the business components and fields referenced by the integration
components and their integration component fields.

•

•

•

•

•

Chapter 18

[327]

The EAI Siebel Adapter business service must always be used in conjunction
with integration objects to query or manipulate Siebel data exposed by business
components. In the remainder of this chapter, we will explain how integration
objects and EAI Siebel Adapter can be used to support integration interfaces.

Structure of integration objects
The following screenshot from the Object Explorer in Siebel Tools describes the
structure of the Integration Object type in the Siebel Repository:

From the preceding screenshot we can learn the following:

An integration object contains one or more integration components
An integration component contains one or more integration
component fields
An integration component contains one or more integration component keys,
which are made up of integration component key fields
User properties can be defined on all levels to drive the behavior of the
business services, namely EAI Siebel Adapter, that work with the integration
object definitions

Internal and external integration objects
Integration objects that reference Siebel business objects are called internal
integration objects. They can be used for read and write operations on business
components. The EAI Siebel Adapter business service is designed to work with
internal integration objects. Data that is passed to the EAI Siebel Adapter's methods
must therefore match the structure defined by the internal integration object. Siebel
Tools provides a wizard to create internal integration objects by defining the business
object and its components that should be exposed by the internal integration object.

•

•

•

•

Supporting Integration Interfaces

[328]

The following screenshot shows the Internal Account Interface integration object in
Siebel Tools as an example for an internal integration object:

The Base Object Type property of Siebel Business Object allows us to identify the
Internal Account Interface integration object as internal. The External Name property
contains the name of the business object—Account – to which the integration object
maps. The list of integration components shows seven business components,
identified by the External Name property, which are arranged hierarchically
by the Parent Integration Component property. In the previous example, the
Account integration component is the parent of the Business Address and the
other integration components.

To be able to create integration touch points with external systems, we can also
register the data schema of external systems as external integration objects. Siebel
Tools provides wizards to read the schema information from a variety of sources
such as XML Schema Definition (XSD) files, Data Type Definition (DTD) files,
and enterprise applications such as SAP R/3 and Oracle eBusiness applications.

Chapter 18

[329]

The screenshot shows the Ariba Order Request integration object as an example of an
external integration object:

The Base Object Type property of XML allows us to identify that the Ariba Order
Request integration object has been created by importing an external XSD file.

The Siebel EAI toolkit contains the EAI Data Transformation Engine business
service, also known as Data Mapper, which is capable of converting instances of
integration objects from a source to a target instance. For example, it can be used
to map data represented by an internal integration object instance to an external
application's data schema represented by an external integration object. This is
useful for situations where no external data mapping facility is available.

Integration component keys
Internal integration objects can be used in two directions—outbound and inbound.
The outbound direction is used when EAI Siebel Adapter queries for data and writes
it to its output property set. The inbound direction is taken when the input property
set for EAI Siebel Adapter contains incoming data that should be written to the
Siebel database.

For these write operations—inserting, updating, and deleting records via the EAI
Siebel Adapter – we must specify integration component keys. These keys enable
EAI Siebel Adapter to look up existing records.

Supporting Integration Interfaces

[330]

An integration component key is composed of one or more integration component
key fields. When, for example, the Insert method of EAI Siebel Adapter is invoked,
it will use the information in the integration component keys to query the existing
Siebel data for records that have the same key field values as the incoming data.
If the data already exists, the Insert method will fail.

An integration component can contain one or more keys, which are used in the order
specified by the Sequence property.

The key type can be either User Key, which supports the behavior described
previously, or Status Key.

A status key is a combination of fields that is returned by EAI Siebel Adapter's
inbound methods (Insert, Update, Upsert, Synchronize, and Execute) when the
StatusObject input argument is set to TRUE. This is useful when the external
system that sent the data requires a reply from Siebel CRM to determine whether
the inbound data operations were successful or not.

The status key typically contains the operation field that is populated by EAI
Siebel Adapter with the name of the operation executed against the Siebel data.
In addition, other data and system fields such as the Id field can be used in the
status key.

Creating internal integration objects
Siebel Tools provides a wizard that assists developers in the task of creating internal
and external integration objects. Because the focus of this chapter is on supporting
integration interfaces with EAI Siebel Adapter, we will only discuss how to create
internal integration objects.

Case study example: Creating an internal
integration object
As defined in Chapter 3, one of AHA's requirements is to support reporting on data
used by sales representatives. AHA intends to use Oracle's BI Publisher, which is the
standard reporting tool for Siebel 8.1 and higher. The Account business object should
be used to create the integration object. The business analyst team has identified the
following business components and fields as relevant for reporting (the business
component name is followed by its hierarchy level in parentheses and the list
of fields):

Chapter 18

[331]

Account (Parent): Name, CSN, Account Status, Type, Partner Flag, Account
Status Date, Price List, Currency Code, Credit Auto Approval Limit, Payment
Type, Bill to Address multi value fields, Ship to Address multi value fields
Audit Trail Item 2 (Child): Employee Login, Field, Old Value, New Value,
Date, Operation
AHA Customer Offer (Child): Offer Date, User Login Name, Product Name,
Response Type, Response Text
AHA Customer Document (Child): Document Type, Document Id,
Document Status, Responsible User Login Name, Verified Flag

The following procedure describes how we can use the Integration Object wizard in
Siebel Tools to create an internal integration object:

1. If necessary, expose the Integration Object type in the Object Explorer.
2. Create and lock a new Project named AHA EAI Objects.
3. Click the New button in the Edit toolbar.
4. In the New Object Wizards dialog, click the EAI tab.
5. Double-click the Integration Object icon.
6. In the Integration Object Builder dialog, enter the following values:

Project: AHA EAI Objects
Source System: EAI Siebel Wizard

7. Click Next.
8. In the Integration Object Builder dialog, enter the following values:

Source Object: Account
Source Root: Account
Name: BIP AHA Customer Data

The prefix BIP is necessary to display the integration
object in the BIP Administration screen.

9. Click Next. It may take a while for the next dialog to load.
10. If a message appears that indicates missing or invalid business components

or links, verify that none of the objects mentioned in the message is relevant
for the new integration object and click Next to continue.

•

•

•

•

°

°

°

°

°

Supporting Integration Interfaces

[332]

11. In the Choose Integration Components dialog, deselect and select the
uppermost root object (Account) to ensure that only the Account business
component is selected.

12. Scroll down in the hierarchy tree and click the checkbox next to the following
components to include them in the integration object:

Account_Bill To Business Address
Account_Ship To Business Address
AHA Customer Document
AHA Customer Offer
Audit Trail Item 2

13. Click Next.
14. Acknowledge the message that a large number of (integration component)

fields have been deactivated because the respective business component
fields are calculated fields. We can later activate these fields to allow the
calculated values to be used in outbound messages. However, it is not
possible to populate a calculated field from external systems.

15. Click Finish.
16. Verify that the new integration object is displayed in the Integration

Objects list.
17. Set the Comments property of the BIP AHA Customer Data integration

object to Created for AHA prototype.

Deactivating unneeded integration component
fields
The Integration Object wizard creates one integration component field for each
field in the chosen business components. Because some business components such
as Account have a large number of fields, it is important to ensure that only those
integration component fields that are needed for the interface are active. Deactivating
the unneeded integration component fields is a manual process and the following
procedure describes how to accomplish it:

1. Navigate to the BIP AHA Customer Data integration object.
2. In the Object Explorer, expand the Integration Object type and select the

Integration Component type.
3. In the Integration Components list, select the Account integration

component.

°

°

°

°

°

Chapter 18

[333]

4. In the Object Explorer, expand the Integration Component type and select
the Integration Component Field type.

5. In the Integration Component Fields list, create a new query.
6. In the Name column, enter NOT(followed by the list of fields defined for

the Account integration component. The field names must be separated by
the keyword OR. The field list should also include the EAI Siebel Adapter
system fields named operation and searchspec as well as all fields used as
integration component key fields. The following search string is an example
of retrieving the fields not required for the Account integration component:
NOT(Name OR CSN OR Account Status OR Type OR Partner Flag OR
Account Status Date OR Price List OR Currency Code OR Credit Auto
Approval Limit OR Payment Type OR operation OR searchspec)

7. Execute the query. The result set now contains only fields that we do not
need for the integration interface. We must now deactivate all these fields.

8. Because Siebel Tools does not support the Ctrl+A shortcut or a similar
command to simply select all records with a single click, we must perform
the following steps:

In the Integration Component Fields list, select the first record
Press the Shift key and select the last record of the current page
(do not scroll down)
Keep the Shift key pressed and drag the scroll bar button to the end of
the list
Keep the Shift key pressed and select the last record
Release the Shift key

9. In the Edit menu, select Change Records…
10. In the Change 1 section of the Change Selected Records dialog, select

Inactive for the Field section and set the Value to Y. The following
screenshot shows the dialog after these settings:

°

°

°

°

°

Supporting Integration Interfaces

[334]

11. Click the OK button.
12. Verify that all selected records are inactive by inspecting the Inactive flag or

by observing the font color (a light rose color indicates the inactive state of a
record in Siebel Tools).

13. Repeat steps 3 to 12 for the Audit Trail Item 2, AHA Customer Offer,
and AHA Customer Document integration components using the query
technique described in step 6 and the list of field names at the beginning
of this section.

14. Compile the BIP AHA Customer Data integration object.

Did you know?
The process of deactivating unneeded integration component
fields is that important in creating an internal integration
object which exactly matches the required schema. We must
deactivate the fields rather than delete them in order to keep
the Synchronize feature enabled.
The Synchronize feature allows the refreshing of an internal
integration object when new fields have been added to
business components. If unneeded integration component
fields are deleted, the Synchronize wizard will recreate them
as new active definitions, rendering the integration object
dysfunctional.

Defining integration component keys
The following procedure describes how to define user keys and status keys for
integration components. In the example, we create a copy of the Internal Account
Interface integration object to provide the AHA team with an interface that allows
querying and manipulating of account data. The Name and CSN fields will serve as
key fields:

1. Navigate to the Internal Account Interface integration object.
2. Copy the Internal Account Interface integration object.
3. Set the following properties for the copied object definition:

Name: AHA Customer Interface
Project: AHA EAI Objects
Comments: Created for AHA prototype

4. Select the Account integration component of the AHA Customer Interface
integration object.

°

°

°

Chapter 18

[335]

5. Navigate to the Integration Component Fields list.
6. Query for the CSN integration component field and uncheck the Inactive

flag, making the field active.
7. Navigate to the Integration Component Keys list for the Account integration

component.
8. Deactivate all user key definitions.
9. In the Integration Component Keys list, create a new record and enter the

following property values:
Name: AHA User Key 1
Key Sequence Number: 1
Key Type: User Key

10. In the Object Explorer, expand the Integration Component Key type and
select the Integration Component Key Field type.

11. Create a new record and enter the following values:
Name: Name
Field Name: Name
Sequence: 1

12. Create another record with the following properties:
Name: CSN
Field Name: CSN
Sequence: 2

13. Select the integration component key named Status Key and display the list
of integration component key fields.

14. Create two new records similar to steps 11 and 12 to include the Name and
CSN fields in the status key.

15. Compile the AHA Customer Interface integration object.

A Siebel Tools archive file (Integration Objects.sif) is available with this
chapter's code file. The file represents the two integration objects created in this
chapter's case study examples.

°

°

°

°

°

°

°

°

°

Supporting Integration Interfaces

[336]

Testing integration objects
We can use the Business Service Simulator view, introduced in the previous
chapter, to conveniently test new and customized integration objects. To verify the
functionality, we must invoke the methods of the EAI Siebel Adapter business
service and provide the correct input property sets.

The following table describes the methods and their arguments of the EAI Siebel
Adapter business service:

Method Description Input Arguments Output Arguments
Query Executes a query

on the business
components
referenced by
the integration
object's
integration
components.

OutputIntObjectName:

The name of an internal
integration object. Defines the
structure of the output property
set.

SearchSpec:

Allows providing query criteria
in Siebel Query Language.

PrimaryRowId:

When provided, the query is
executed against the primary
business component and matches
the Id field with the property
value.

SiebelMessage:

The Query method accepts a
hierarchical input property set,
which must match an internal
integration object.

SiebelMessage:

A hierarchical property
set with its structure
defined by the
internal integration
object given by the
OutputIntObjectName
input property.

NumOutputObjects:

The number of records
in the SiebelMessage.

Chapter 18

[337]

Method Description Input Arguments Output Arguments
QueryPage Similar to the

Query method.
In addition,
the QueryPage
method allows
creation of a
series of (smaller)
output property
sets, visibility
control, and
sorting.

PageSize:

The number of records in the
output property set (the page).

StartRowNum:

The number of the first record to
include in the output property
set.

ViewMode:

Allows visibility control as in My
and All views.

SortSpec:

A comma separated list of
integration component fields that
defines the sort order of records
the output property set.

SiebelMessage:

A hierarchical property
set with its structure
defined by the
internal integration
object given by the
OutputIntObjectName
input property.

LastPage:

When set to false,
additional records exist
in the query result.
When set to true, the
last page of the record
set is reached. This
property is necessary
for implementing loops
with the QueryPage
method.

Insert Uses the
integration
component key
information to
look up matching
records. When no
matching record
exists, a new
record is created.
When a record
with the same
key field values
already exists,
an exception is
thrown.

SiebelMessage:

A hierarchical property set
that must match an internal
integration object definition.

StatusObject:

When set to TRUE, the output
property set contains records that
match the status key definition of
the integration object.

ObjectLevelTransactions:

When set to TRUE, each record
in the input SiebelMessage
is committed separately to the
database.

When set to FALSE (the default),
the commit operation is only
executed when the entire input
SiebelMessage has been
processed without errors.

SiebelMessage:

Contains the status
objects when the
StatusObject input
property has been set to
TRUE.

PrimaryRowId:

The ROW_ID value of
the new record.

Supporting Integration Interfaces

[338]

Method Description Input Arguments Output Arguments
Update Similar to the

Insert method.
The major
difference is that
when a record
exists in the
database with the
same key field
values, an update
is executed.
When the record
does not exist,
an exception is
thrown.

Similar to the Insert method. Similar to the Insert
method.

Upsert Combines the
Update and Insert
methods.

When a record
with the same key
field values exists
in the database, it
will be updated.
When no
matching record
is found, a new
record will be
inserted.

Similar to the Insert and Update
method.

Similar to the Insert and
Update method.

Delete Identifies
existing records
by various
mechanisms
and deletes
them. When
no matching
record is found,
an exception is
thrown.

Similar to the Query method. Similar to the Insert and
Update method.

Synchronize Combines the
Insert, Update,
and Delete
functionality
by applying the
data in the input
SiebelMessage
to the existing
records in the
database.

Similar to the Insert and Update
method.

Similar to the Insert and
Update method.

Chapter 18

[339]

Method Description Input Arguments Output Arguments
Execute Allows definition

of the desired
method (query,
insert, update,
delete) for
each record
in the input
SiebelMessage
separately using
the operation
and searchspec
system fields.

Similar to the Insert and Update
method.

Similar to the Insert and
Update method.

The following example procedure describes how to test an internal integration object
for queries using the EAI Siebel Adapter Query and Upsert methods in the Business
Service Simulator view:

1. Log on to the Siebel Developer Web Client with administrative privileges.
2. Navigate to the My Accounts list view.
3. Create a test account record and press Ctrl+S to save it.
4. Retrieve the ROW_ID value of the test record by pressing Ctrl+Alt+K

and copying the value of the Row # field from the About Record dialog
to the clipboard.

5. Navigate to the Administration - Business Service screen, Simulator view.
6. In the upper list applet, create a new record and enter the following values:

Service Name: EAI Siebel Adapter
Method Name: Query

7. In the Input Arguments list applet, create a new record and set the Test Case
column to 1.

8. Open the multi value group applet for the Property Name column by
clicking on the select icon in the column.

9. In the Property Set Properties list applet, create a new record with the
following values:

Property Name: PrimaryRowId
Value: <paste the ROW_ID value from the clipboard>

10. Click Save.

°

°

°

°

Supporting Integration Interfaces

[340]

11. Create a second record in the Property Set Properties list applet and enter
the following values:

Property Name: OutputIntObjectName
Value: AHA Customer Interface

12. Click Save.
13. Click OK to close the Property Set Properties MVG applet.
14. In the upper list applet, click the Run on One Input button to execute the

Query method with the input property set created in steps 7 to 13.
15. Observe that a new output property set is created in the Output Arguments

list applet at the bottom of the view.
16. Open the MVG applet for the Child Type column, which should have a

value of SiebelMessage.
17. Continue to click the MVG icon in the Child Type field until the Type

column has a value of Account.
18. Open the MVG applet for the Property Key column.
19. Verify that the list of fields for the account record is displayed and matches

the list of active integration component fields of the Account integration
component in the AHA Customer Interface integration object.

20. Click the X button to close the MVG applet.

Did you know?
Using the Save to File… button in the Output Arguments list
applet, we can export the entire output property set to an XML
file, which may be more convenient for inspection.

The following procedure describes how to test an integration object for update and
insert operations using the Upsert method of EAI Siebel Adapter:

1. Execute the EAI Siebel Adapter's Query method as shown in the previous
procedure.

2. In the Output Arguments list applet, click the Move to Input button.
3. Observe that a new record is created in the Input Arguments list applet.
4. Set the Test Case # column of the new record to 2.
5. Use the MVG icon in the Child Type column to navigate to the property set

with type Account.
6. Open the MVG list applet of the Property Key column.

°

°

Chapter 18

[341]

7. Scroll down to the Location field and change its value to EAI Siebel Adapter
Update.

8. Click OK.
9. Click the X button to close the MVG list applet.
10. Open the MVG list applet for the Property Name column in the Input

Arguments list applet.
11. Create a new record with the following values:

Property Name: StatusObject
Value: true

12. Click Save.
13. Click OK.
14. In the upper list applet, create a new record with the following values:

Service Name: EAI Siebel Adapter
Method Name: Upsert

15. Ensure that test case 2 is selected in the middle applet and click the Run on
One Input button.

16. Inspect the output property set as shown in the previous procedure.
17. Observe that the Account property set contains fields defined by the status

key of the AHA Customer Interface integration object and that the operation
field is set to update.

18. Repeat the procedure from step 5 to 16 but this time change the CSN field,
which is part of the integration component's user key, to AHA000 and the
Location field, which is part of the table user key, to EAI Siebel Adapter
Insert.

19. Observe that the operation field of the status object is now set to insert.
20. Navigate to the Accounts screen and verify by querying with EAI Siebel

Adapter* in the Site field that two records exist.
21. Delete the test records if necessary.

By following test procedures similar to the preceding ones, we ensure that our new
integration objects work for queries as well as for update or insert operations.

°

°

°

°

Supporting Integration Interfaces

[342]

Advanced settings for integration objects
We can specify user properties on all levels of an integration object—object,
component, and field level – to define specialized behavior. The following
table describes the most important user properties for integration objects (IO),
integration components (IC), and integration component fields (ICF). The table also
informs us on the applicability of the user properties for each level:

User Property Description IO IC ICF
ViewMode Can be set to the Siebel visibility codes

(Sales Rep, Manager, All, Organization,
Catalog, and so on) to override the current
view mode of the business component
during queries.

Yes Yes No

AdminMode When set to Y, the business component
will be switched to administration mode,
which allows all insert, update, and delete
operations.

Yes Yes No

AllLangIndependentVals When set to Y, EAI Siebel Adapter uses the
language independent code (LIC) value
for a multilingual list of values.

Yes No No

PICKLIST When set to Y this field level user property
causes EAI Siebel Adapter to validate the
values to be inserted in pick list fields.
When set to N, validation occurs at the
object manager level.

No No Yes

Ignore Bounded Picklist This field level user property, when set to
Y, advises the EAI Siebel Adapter to ignore
errors that arise from providing invalid
values for a bounded pick list field.

Yes Yes No

NoDelete,
NoInsert, NoQuery,
NoSynchronize,
NoUpdate

These component level user properties
allow overriding of the respective
properties of the business component.

No Yes No

FieldDependency Allows specification of the name of another
field, which EAI Siebel Adapter will
process before the field that has the user
property defined.

No No Yes

PREDEFAULT Overrides the pre-default value of the
business component field.

No No Yes

Chapter 18

[343]

User Property Description IO IC ICF
sortorder Can be set to ASC for ascending or DEC

(sic) for descending. When EAI Siebel
Adapter executes a query, the sort order
will override the business component’s
SortSpec property.

No No Yes

sortsequence Allows specifying sequential numbering of
sorted fields.

No No Yes

Source: Oracle Siebel Documentation: Integration Platform Technologies: Siebel
Enterprise Application Integration, Version 8.1 (http://download.oracle.com/
docs/cd/E14004_01/books/EAI2/booktitle.html).

Summary
Integration objects and the EAI Siebel Adapter business service play a vital role in
integrating Siebel with external applications including Oracle's BI Publisher (the
standard reporting engine for Siebel 8.1 and above).

In this chapter, we learned how internal integration objects work and how we can
use the Integration Object wizard in Siebel Tools to create them.

We also discussed the post-wizard configuration steps for integration objects as well
as basic testing procedures.

Finally, we described the most important user properties that we can use to fine-tune
the behavior of EAI Siebel Adapter during read or write operations.

The next chapter is the first of two chapters on Siebel Workflow. In the following
chapter, we will learn how to create, test, and publish workflow processes.

Siebel Workflow
The Siebel Workflow framework represents the foundation of business process
automation in Siebel CRM applications. This chapter is the first of two in which we
will learn basic and advanced configuration techniques for Siebel Workflow. The
goal of this chapter is to gain deep understanding of Siebel Workflow and to learn
basic techniques which enable us to create, test, publish, and manage workflow
processes in Siebel CRM applications.

The chapter is structured as follows:

Understanding Siebel Workflow
Designing and creating workflow processes
Simulating and testing workflow processes
Publishing, activating, and managing workflow processes
Invoking workflow processes
Defining runtime events
Defining decision steps

Understanding Siebel Workflow
In order to gain a thorough understanding of Siebel Workflow, we can use the Siebel
Sample Database as a safe environment for exploration. In the following procedure,
we will invoke a preconfigured workflow process with a click on a menu item and
use Siebel Tools to investigate the object definitions behind the user interface.

The workflow process that serves as an example creates a new quote for an existing
account and navigates to the Quote Line Items view to allow the end user to continue
the business process by entering line items for the new quote. We must emphasize at
this point that this simple workflow process is just one of hundreds of preconfigured
workflow processes in Siebel CRM. The majority of Siebel CRM functionality relies
on the Siebel Workflow framework in very different ways.

•
•
•
•
•
•
•

Siebel Workflow

[346]

Following the given procedure, we can explore how a Siebel workflow process
supports the business process of creating a quote for an existing customer account.

1. Log in to the Siebel Sales application, connecting to the Sample database as
SADMIN.

2. Navigate to the Accounts screen, My Accounts view.
3. Right-click on any account record in the list and select New Quote from

the menu.
4. Observe that the application automatically navigates to the Quotes screen,

Line Items view and that a new quote record has been created.
5. Observe that the account for the new quote is the one we clicked on in step 3.

The following screenshot shows the My Accounts list view. The context menu item
for creating a new quote for the selected account is highlighted:

We will now use Siebel Tools to investigate the applet menu item definition and the
workflow process invoked by it:

1. Log in to Siebel Tools, connecting to the Sample database as SADMIN.
2. In the View menu, select the Options command.
3. In the Options dialog, select the Object Explorer tab.
4. Ensure that all child elements for the Applet type are displayed.
5. Close the Options dialog.

Chapter 19

[347]

6. In the Object Explorer window, select Applet.
7. Query for the Account List Applet in the applet list.
8. Expand the Applet type in the Object Explorer window.
9. Select Applet User Prop in the Object Explorer window.
10. In the list of applet user properties, identify the user property named Named

Method: NewQuote.
11. Inspect the Value of the user property.

The following screenshot shows the user properties for the Account List Applet:

The value of the Named Method: New Quote user property is visible in the
expression builder, which can be invoked by clicking the ellipsis button (…) in
the Value column.

The value of the user property indicates that when the NewQuote method is invoked,
a business service named Workflow Process Manager is invoked with its RunProcess
method. The name of the workflow process to be run is Account - New Quote.

Invoking workflow processes by user interface elements such as menu items and
buttons is quite common in Siebel CRM applications. Other methods to invoke
workflow processes are discussed later in this chapter.

Siebel Workflow

[348]

We can now continue the exploration by inspecting the definition of the
Account - New Quote workflow process in Siebel Tools:

1. In the Object Explorer window, select the Workflow Process type.
2. In the list, query for the Account - New Quote workflow process.
3. Right-click the workflow process and select Edit Workflow Process.
4. In the editor, use the Palette window to identify the different types of steps

used in this workflow process.
The following screenshot shows the Account - New Quote workflow process in the
Workflow Process Editor in Siebel Tools:

The workflow consists of four steps. A step's shape indicates its type. This particular
workflow process uses a Start step, a Siebel Operation step to create a new quote
record, a Sub Process step to invoke another workflow process, and an End step,
which indicates the end of the process. The steps of a workflow process are connected
using Connector branches.

5. Double-click the Goto Quote View step in the editor.
6. The Goto_Quote workflow process is displayed in a new tab.
7. Verify that the Goto_Quote workflow process uses a User Interact step to

navigate to the Quote Item Detail View.

Right-click the step and select View Properties Window. In the
Properties window, inspect the User Interact View property.

Chapter 19

[349]

In summarizing our findings made during this exploration, we can say that when an
end user clicks the New Quote menu item on an existing account, the Account - New
Quote workflow process is executed by the Workflow Process Manager business
service. The workflow process uses a Siebel Operation step to create a new quote
record for the account and a Sub Process step to invoke a second workflow process,
which handles the view navigation. Subsequently the end user is navigated to the
Quote Item Detail View.

Did you know?
The Workflow Process Manager business service is always used to
execute a workflow process definition. Depending on the invocation
technique, the business service can run within a user session or as a
separate server process.

Siebel Workflow step types
The following table describes the step types of the Siebel Workflow framework:

Step Type Symbol
(Shape)

Description

Start Defines the start point of a workflow process. It is possible
to define one or more event condition branches to trigger
the workflow process using Siebel runtime events.

Business
Service

Allows the specification of a business service and its method
to be invoked as well as passing the values of input and
output arguments from and to workflow process properties.

Decision Point Defines one or more branch conditions, which are followed
when the condition evaluates to True. Only one branch
at a time can be followed (Siebel Workflow processes are
sequential in nature).
The branching logic is defined on the branches (connectors)
leading from this step type.

Sub Process Invokes another workflow process. Arguments can be
passed between the calling and the nested workflow
processes.

Siebel
Operation

Serves as a mechanism to execute commands similar to
those typically invoked by end users or external systems.
Commands include inserting, updating, deleting, and
querying records as well as navigating through record sets.

Task Creates an item in an end user's Universal Inbox list that
points to a task. (Integrates Siebel Workflow with Siebel
Task UI in Siebel 8 and higher.)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Siebel Workflow

[350]

Step Type Symbol
(Shape)

Description

User Interact Implements navigation to a view and waits for user
interaction such as the click on a button before the workflow
proceeds. Widely used in Siebel standard interactivity
applications and Siebel Version 7, in both of which Task UI
is not available.

Wait Allows developers to specify a time interval that the
workflow process spends in a waiting state. Not applicable
for workflow processes that run in end user sessions.

Stop A defined exit point. Allows specification of a message to
be displayed when the step is reached. Typically used in
conjunction with exception connectors.

End Indicates the successful completion of a workflow process.

Connector Defines the normal flow of operation between steps.

Error Exception Allows definition of a branch that is chosen when the step
from which this connector originates encounters an error
condition. Widely used to implement exception handling.

Workflow process properties
Similar to a classic program written in any modern programming language, a
workflow process has a set of variables that can be used by developers to hold
data and pass them between steps.

The Siebel term for these variables is Process Properties. As such they are child
objects of the workflow process definition and are distinguished primarily by their
name and data type.

Siebel Workflow provides the following data types for process properties:

String: Stores alphanumeric characters.
Number: To store numbers for calculations.
Date: To store date and timestamp values.
Hierarchy: Used to store entire property set hierarchies. Mainly used in
integration scenarios.
Integration Object: References an integration object definition to define the
hierarchical structure of the data stored within the process property.
Binary: Used to store data that is only used within the workflow process and
not passed to or from the workflow process.

•
•
•
•

•

•

Chapter 19

[351]

In addition to a data type and a name, a workflow process property can be declared
as being able to be populated from outside of the workflow process, passed out of
the workflow process (or both), or used only within the workflow process.

Designing and creating workflow
processes
It is important to understand that a workflow process is a program. The
programming language is implemented as the Siebel Tools workflow framework,
which allows us to graphically define the flow of steps, the decision logic, and
exception handling.

The main difference between Siebel Workflow and classic programming languages
is that we do not need to write program code. In the late nineties, many graphical
programming interfaces emerged and the term fourth generation language (4GL) was
coined to commonly describe them.

Did you know?
Siebel Tools does not allow us to write program code in the workflow
process editor. When specialized behavior is needed, we must use
existing business services or write our own business service methods
using the Siebel scripting framework.
We will discuss Siebel scripting for business services later in this book.

As developers, we may find ourselves in the situation of being asked by the business
analyst team to assist in translating business requirements into automation logic.

For example, a business analyst could ask for our opinion on the following
requirement (as defined in Chapter 3, Case Study Introduction):

AHA wishes to use a single entity named "Customer Document" to contain all opportunities,
quotes, orders and campaign responses in a single list.

The above requirement implies that for every opportunity, quote, order, and
campaign response record, a record in the AHA Customer Document business
component must be created and synchronized. When document records are deleted,
we must also cater for the deletion of the appropriate record in the AHA Customer
Document business component.

Siebel Workflow

[352]

The design work for a workflow process can be described with the following list:

Identify variables and map them to workflow process properties of the
appropriate data type
Identify data operations such as insert, update, and delete and map them to
Siebel Operation step calls
Identify complex application logic and find supporting business services
and methods
Identify decision logic and map it to Decision steps and branches
Identify potential for errors and cater for exception handling

Experienced developers may find it useful to use the workflow process designer in
Siebel Tools to draft the new workflow process. This is a recommended practice as it
is commonplace in computer technology to iteratively find solutions by going from a
rough but working draft to a finer end product.

The workflow process editor
The workbench for creating and testing workflow processes is the workflow process
editor in Siebel Tools. It consists of the following windows:

Editor canvas: Here we can outline the flow of steps by using drag and
drop techniques
Palettes window: From this docking window, we can drag step types to
the canvas
Properties window: The familiar docking window allows us to define the
properties for each selected step or branch in the canvas editor
Multi Value Property Window (MVPW): Allows us to define detailed input
and output arguments for each selected step

•

•

•

•

•

•

•

•

•

Chapter 19

[353]

The following screenshot shows the workflow process editor with the four windows
described previously in Siebel Tools:

In the following case study scenario, we will create a workflow process that
synchronizes the quotes, orders, opportunities, and marketing responses of an
account with the list of customer documents represented by the AHA Customer
Documents business component.

We will use two pre-built business services—EAI Siebel Adapter and EAI Data
Transformation Engine – for this purpose. As pointed out in Chapter 17, Business
Services it is highly recommendable to explore and use pre-built business services.

In Chapter 18, Supporting Integration Interfaces we learned that EAI Siebel Adapter
relies on integration object definitions. Therefore the scenario includes instructions
to create two integration objects.

Siebel Workflow

[354]

The EAI Data Transformation Engine business service can be used to transform
one integration object instance to another by means of a data map. The scenario
will therefore also include instructions for creating a data map.

Case study example: Creating integration
objects
The following procedure describes how to create the integration object definitions
that are needed as a prerequisite for the workflow process. Please refer to Chapter 18
for explicit instructions if you find the following too sparse:

1. If necessary, lock or check out the project named AHA EAI Objects.
2. Use the Integration Object wizard to create a new internal integration object

with the following characteristics:
Project: AHA EAI Objects
Name: AHA Account Documents Source IO
Business Object: Account
Business Components: Account, Quote, Opportunity, Order Entry
- Orders, Response

3. Deactivate all integration component fields except the following ones listed
for each integration component:

Account: Integration Id, Location, Name, Primary Organization,
operation, searchspec, Account Status, CSN, Id, Created By,
Updated By
Opportunity: Integration Id, Name, Primary Organization, Sales
Stage, operation, searchspec, Id, Created By, Updated By
Order Entry - Orders: Order Number, Order Type, Primary
Organization, Revision, Status, operation, searchspec, Id,
Created By, Updated By
Quote: Integration Id, Primary Organization, Quote Number,
Revision, Status, operation, searchspec, Id, Created By, Updated By
Response: Description, Status, operation, searchspec, Id, Created By,
Updated By

4. Set the Type property of the following fields from System to Data in all
integration components: Id, Created By, Updated By.

°

°

°

°

°

°

°

°

°

Chapter 19

[355]

5. Repeat step 2 to create a second internal integration object with the following
characteristics:

Project: AHA EAI Objects
Name: AHA Customer Documents Target IO
Business Object: Account
Business Components: Account, AHA Customer Documents

6. Repeat step 3 to deactivate all integration component fields except the
following ones listed:

Account: Integration Id, Location, Name, Primary Organization,
operation, searchspec, Account Status, CSN, Id, Created By,
Updated By
AHA Customer Documents: Document Id, Document Status,
Document Type, Responsible User Id, Verified Flag, Account Id,
operation, searchspec
Create a user key definition named User Key 1 for the AHA
Customer Documents Target IO integration component with the
Document Id field as the sole key field.
Create a status key definition named Status Key 1 for the AHA
Customer Documents Target IO integration component with
Document Id and operation as key fields.
Compile the AHA Account Documents Source IO and AHA
Customer Documents Target IO integration objects.

A Siebel Tools archive file (Integration Objects.sif) is available with this
chapter's code files. The file represents the two integration objects created in the
preceding section.

Case study example: Creating a data map
The following procedure describes how to create a data map using the two
integration object definitions created in the previous section:

1. Log in to the Siebel Developer Web Client. Use SADMIN if you connect to
the Sample database.

2. Navigate to the Administration - Integration screen, Data Map Editor view.
3. In the Integration Object Map list, create a new record with the

following values:
Name: AHA Account Documents Map
Source Object Name: AHA Account Documents Source IO

°
°
°
°

°

°

°

°

°

°
°

Siebel Workflow

[356]

Target Object Name: AHA Customer Documents Target IO
Comments: Created for AHA prototype

4. In the middle list applet (Integration Component Map), create five new
records as per the following table:

Name Source Component Name Target Component Name
Account Account Account
Quote Quote AHA Customer Documents
Order Order Entry - Orders AHA Customer Documents
Opportunity Opportunity AHA Customer Documents
Response Response AHA Customer Documents

Compare your work with the following screenshot:

5. Select the Account component map in the middle applet.
6. In the bottom applet (Integration Field Map) create four new records as per

the following table:

Source Expression Target Field Name
[Integration Id] Integration Id
[Name] Name
[Location] Location
[Primary Organization] Primary Organization

7. Select the Quote component map in the middle applet.
8. In the bottom applet (Integration Field Map) create four new records as per

the following table:

Source Expression Target Field Name
"Quote" Document Type
[Id] Document Id
[Status] Document Status
[Updated By] Responsible User Login Id

°
°

Chapter 19

[357]

9. Select the Order component map in the middle applet.
10. In the bottom applet (Integration Field Map) create four new records as per

the following table:

Source Expression Target Field Name
[Order Type] Document Type
[Id] Document Id
[Status] Document Status
[Updated By] Responsible User Login Id

11. Select the Opportunity component map in the middle applet.
12. In the bottom applet (Integration Field Map) create four new records as per

the following table:

Source Expression Target Field Name
"Opportunity" Document Type
[Id] Document Id
[Sales Stage] Document Status
[Updated By] Responsible User Login Id

13. Select the Response component map in the middle applet.
14. In the bottom applet (Integration Field Map) create four new records as per

the following table:

Source Expression Target Field Name
"Response" Document Type
[Id] Document Id
[Status] Document Status
[Updated By] Responsible User Login Id

Compare your work with the screenshot below. The screenshot shows the
integration field map for the Response component.

Siebel Workflow

[358]

While typically used for integration with external applications, data
maps can also be helpful for internal use such as in our scenario.
The data map created in the previous section directs the EAI Data
Transformation Engine business service to write the results of the
Source Expression from fields in four different source components
to a single target component.

An ADM import file (AHA Account Documents Map.xml) is available with
this chapter's code files. The file represents the EAI data map created in the
preceding section.

Case study example: Creating a workflow
process with business service steps
The following procedure describes how to create a Siebel Workflow process that
invokes business service methods and uses workflow process properties to pass
arguments between them:

1. In Siebel Tools, create and lock a new project named AHA Workflows.
2. In the Object Explorer, select the Workflow Process type.
3. In the Object List Editor, create a new record with the following properties:

Name: AHA Synchronize Customer Documents
Project: AHA Workflows
Business Object: Account

4. Right-click the new workflow process and select Edit Workflow Process.
5. In the Multi Value Property Window (MVPW), select the Process Properties

tab and create new records as per the following table:

Name Default String Data Type
AHA Source IO Name AHA Account Documents Source IO String
AHA Source Data Hierarchy
AHA Map Name AHA Account Documents Map String
AHA Target Data Hierarchy
AHA Get Status Object true String
AHA Status Object Data Hierarchy

°

°

°

Chapter 19

[359]

6. Press Ctrl+S to save your changes.
7. Drag the following step types from the Palettes window and drop them side

by side on the drawing canvas:
Start
Business Service (three times)
End

8. Select the first business service step.
9. Right-click the first business service step and select View Properties

Window.
10. In the Properties window, enter the following values:

Name: Get Account Docs
Business Service Name: EAI Siebel Adapter
Business Service Method: Query

11. Press Ctrl+S to save your changes.

You should save your changes frequently in order to avoid
locking conflicts, which can occur when changes are made
in multiple windows.

12. In the Input Arguments tab of the Multi Value Property Window create two
records as follows:

Important:
Always use the pick lists when provided to avoid typos:

Input Argument Type Property Name
OutputIntObjectName Process Property AHA Source IO Name
PrimaryRowId Process Property Object Id

°

°

°

°

°

°

Siebel Workflow

[360]

Compare your work with the following screenshot:

13. In the Output Arguments tab of the Multi Value Property Window create
one record as follows:

Property Name Type Property Name
AHA Source Data Output Argument SiebelMessage

14. Select the second business service step.
15. In the Properties window, enter the following values:

Name: Map
Business Service Name: EAI Data Transformation Engine
Business Service Method: Execute

16. In the Input Arguments tab of the Multi Value Property Window create two
records as follows:

Input Argument Type Property Name
MapName Process Property AHA Map Name
SiebelMessage Process Property AHA Source Data

17. In the Output Arguments tab of the Multi Value Property Window create
one record as follows:

Property Name Type Property Name
AHA Target Data Output Argument SiebelMessage

°

°

°

Chapter 19

[361]

18. Select the third business service step.
19. In the Properties window, enter the following values:

Name: Synchronize
Business Service Name: EAI Siebel Adapter
Business Service Method: Synchronize

20. In the Input Arguments tab of the Multi Value Property Window create two
records as follows:

Input Argument Type Property Name
SiebelMessage Process Property AHA Target Data
StatusObject Process Property AHA Get Status Object

21. In the Output Arguments tab of the Multi Value Property Window create
one record as follows:

Property Name Type Property Name
AHA Status Object Data Output Argument SiebelMessage

22. Press Ctrl+S to save your changes.
23. Drag the black Connector icon from the Palettes window to the Start step

and drop it.
24. Verify that the arrow connects the Start step and the first business service step

by inspecting the color of the connector's endpoints. If both endpoints are red,
the connection is valid; if one of the endpoints (typically the arrowhead) is
white, drag the endpoint to one of the x labels of the target shape.

25. Repeat steps 23 and 24 to connect all steps with a connector.
26. Save your changes.

Compare your work with the screenshot below.

27. Click in the canvas area to select the entire workflow process.
28. Right-click the canvas and select Validate…
29. In the Validate dialog, click the Start button.
30. Monitor the status bar of the Validate dialog. When the message indicates

that the number of tests failed is zero, the workflow process is valid.

°

°

°

Siebel Workflow

[362]

31. In case of errors or warning messages, click the respective message to display
the full text in the Details area of the Validate dialog. Every error (for
example, unconnected steps) must be corrected. After the corrective action,
repeat the validation until no errors or warnings are reported.

The workflow created in the procedure above accomplishes the following:

In the Get Account Docs step, the EAI Siebel Adapter's Query method is
invoked. EAI Siebel Adapter will use the AHA Account Documents Source IO
integration object and the value of the Object Id process property, which is
passed to the workflow process at runtime, to query for an account record
and retrieve the account data as well as child business component data of
quotes, opportunities, orders, and responses. The resulting hierarchical
property set is passed to the AHA Source Data process property.
In the Map step, the account data represented by the AHA Source Data
process property is passed to the Execute method of the EAI Data
Transformation Engine (DTE) business service. The information in the AHA
Account Documents Map will be used by the DTE to create an output property
set that inherits its structure from the AHA Customer Documents Target IO
integration object. The resulting hierarchical property set is passed to the
AHA Target Data process property.
In the Synchronize step, EAI Siebel Adapter's Synchronize method is
invoked and the data represented by the AHA Target Data process property
is passed. The Synchronize method will insert new records, update existing
records, and delete any record in the AHA Customer Documents business
component that is not present in the AHA Target Data property set. By
setting the StatusObject input argument to true, the Synchronize method is
instructed to create an output property set that provides information about
the operations (insert, update, delete) carried out on each record of the AHA
Customer Documents business component. This output is passed to the AHA
Status Object Data process property.

A Siebel Tools archive file (AHA Synchronize Customer Documents(1).sif) is
available with this chapter's code files. The file represents the AHA Synchronize
Customer Documents workflow process after the changes made in the preceding
section.

•

•

•

Chapter 19

[363]

Simulating and testing workflow
processes
Similar to classic programming, developers need a secure test environment to verify
that the new workflow process definition works as expected. Siebel Tools provides
us with an integrated workflow process simulator to accomplish this task.

The simulation environment uses the Siebel Developer Web Client, so it is
mandatory to complete the one-time setup of the Siebel Tools debugging options.
These settings are made in the Debug tab of the Tools Development Options
dialog, which we can open by selecting the Options… command in the View
menu of Siebel Tools.

The necessary settings in the Debug tab have already been described in Chapter 2,
Developer Tasks.

The following procedure describes how to use the Siebel workflow simulator:

1. Ensure that all necessary settings have been made in the Debug tab of the
Siebel Tools options dialog.

2. In the Siebel client, find or create one or more test records. For our scenario,
it is necessary to have one account with at least one associated opportunity,
quote, or order.

3. Use the About Record menu option to retrieve the ROW_ID value of
the parent test record. In our scenario, we must retrieve the account's
ROW_ID value.

4. In Siebel Tools, navigate to the AHA Synchronize Customer Documents
workflow process and open it in the editor if necessary.

5. In the Multi Value Property Window, modify the Object Id process
property and enter the value of the account's ROW_ID in the Default String
column. It is recommendable to remove this default value after testing.

6. Save the workflow process.
7. Log out of all instances of the Siebel Developer or Mobile Web Client. Use the

Windows Task Manager if necessary to verify that no instance of siebel.
exe is running.

8. Right-click in the grey toolbar area of Siebel Tools and verify that the
Simulator toolbar is displayed.

9. Right-click in the workflow editor canvas and select Simulate…
10. Click the green arrow button in the Simulator toolbar to start the simulation.

Siebel Workflow

[364]

11. Wait until the Siebel Mobile Web Client has been started completely. The
client automatically navigates to the Workflow Simulator Wait View
and displays a progress bar window. Siebel Tools should come to front
automatically when the startup process is complete.

12. Right-click the yellow simulator background in Siebel Tools and select
Watch Window.

13. In the Watch window, click the uppermost plus sign if necessary to expand
the display of workflow process properties and their current state. We can
use the Watch window to observe how process properties and hierarchical
data structures are modified while we step through the workflow process.

14. Click the second button (Simulate Next) in the Simulator toolbar to execute
the next step in the workflow process. The step to be executed is highlighted
with a red solid border.
The following screenshot shows the AHA Synchronize Customer
Documents workflow process in the simulator after execution of the
Get Account Docs step:

15. Inspect the PS: AHA Source Data process property in the Watch window by
expanding the hierarchy. We can verify that the account and related quotes,
orders, and so on are stored in the process property as a result of the EAI
Siebel Adapter's Query method.

16. Click the Simulate Next button in the Simulator toolbar again to execute the
Map step.

17. In the Watch window, inspect the PS: AHA Target Data process property
and verify that the DTE has successfully produced the desired output.

18. Click the Simulate Next button again to execute the Synchronize step.
19. In the Watch window, inspect the PS: AHA Status Object Data property to

verify the outcome of EAI Siebel Adapter's Synchronize method.
20. Click the Simulate Next button once more to execute the End step and

complete the simulation.

Chapter 19

[365]

21. Click OK to acknowledge the message that indicates successful completion
of the simulation.

22. In the Siebel Developer Web Client navigate to the AHA UI Test View. This
view has been created in a previous chapter and should allow you to verify
that the customer document data has been synchronized successfully.
The following screenshot shows the AHA UI Test View with an account from
the Siebel Sample Database:

We can observe that the Customer Documents list applet shows documents
of different types. The data in the applet has been synchronized by the AHA
Synchronize Customer Documents workflow.

Did you know?
If we wish to continue testing the workflow, we can keep the Siebel
Mobile or Developer Web Client running. However we must return to
the Workflow Simulator Wait View before we can run the simulation in
Siebel Tools again.
To return to the Workflow Simulator Wait View, we can navigate to the
Administration - Business Process screen in the site map and then click
on the Workflow Simulator view link.
As an alternative (the site map link is only present in Siebel Industry
Applications) we can store a URL similar to the following as a browser
favorite.
http://localhost/start.swe?SWECmd=GotoView&SWEView=Wor
kflow+Simulator+Wait+View

Siebel Workflow

[366]

If errors occur during the simulation, we should always use the Watch window to
read the Error Message process property. Typically the error message text includes
sufficient information to guide us to a solution.

We must then close the simulation window, correct the error, save the workflow
process and start the simulation again. The Siebel Mobile or Developer Web Client
can stay open during this time.

Once the workflow process has been tested successfully, we should remove the
Default String entry in the Object Id process property.

Publishing, activating, and managing
workflow processes
Once a workflow process has been successfully simulated and tested, we can publish
it by setting its status to Completed. Before the Siebel application can access the
workflow process, we must also activate it by copying its definition to so-called
runtime tables in the Siebel database.

Siebel Tools provides the functionality to accomplish these tasks. In addition, we will
discuss the administrative views in the Administration - Business Process screen of
the Siebel Web Client, which allow us to manage workflow processes.

Did you know?
It is not necessary, or even possible, to compile Siebel Workflow
processes. Because they are not part of the SRF file, it is easier and faster
to deploy modified or new workflow processes without server downtime.

Chapter 19

[367]

The following diagram illustrates the steps of publishing, activating, and deploying
workflow processes:

From the preceding diagram we can learn the following:

(1): Developers use the Publish functionality in Siebel Tools to mark
workflow processes as Complete.
(1,2): The Publish/Activate functionality allows developers to execute both
the publishing and the activation, copying the workflow process definition to
the data tables, in one step.
(2): We can activate completed workflow processes from the Siebel
Developer Web Client if they have not been activated from Siebel Tools.
(3): Completed workflow processes must be checked in like all other
repository object definitions to be copied to the repository tables in the
development server database.
(4): If necessary, we can use Siebel Tools or the Developer Web Client to
activate workflow processes in the development server database.
(5): We can use Application Deployment Manager (ADM), the Migrate
Repository process, or Siebel Tools export and import functionality to
migrate a workflow process definition from a source repository such as
development to a target repository such as test or production. ADM is
capable of automatically activating migrated workflow processes.
(6): If we do not use ADM, we must use the Siebel Web Client to activate
migrated workflow processes in test or production environments.

•

•

•

•

•

•

•

Siebel Workflow

[368]

(7): The Administration - Business Process screen provides various views
that allow us to manage and administer workflow processes at runtime.

Case study example: Publishing and
activating a workflow process
The following procedure describes how to publish and activate a workflow process.
In our scenario, we will use Siebel Tools for publishing and the Siebel Developer
Web Client for activating the new AHA Synchronize Customer Documents
workflow process:

1. In Siebel Tools, navigate to the AHA Synchronize Customer Documents
workflow process.

2. Click the Publish button in the WF/Task Editor toolbar.
3. Observe that the Status property of the workflow process changes to

Completed.
4. Log on to the Siebel Developer Web Client if necessary.
5. Use the site map to navigate to the Administration - Business Process

screen, Repository Workflow Process view.
6. In the upper list applet, query for the AHA Synchronize Customer

Documents workflow process and select it.
7. Click the Activate button in the upper list applet.
8. In the lower list applet, query for the AHA Synchronize Customer

Documents workflow process.
9. Verify that the workflow process is listed in the lower list applet and has a

deployment status of Active.

Did you know?
You can publish and activate multiple workflow processes at once by
selecting more than one record and clicking the respective buttons in
Siebel Tools or the Developer Web Client.

A workflow process that has a status of Completed in the Siebel Repository is
read-only. To make changes to the workflow process definition, we must select it
and click the Revise button in the WF/Task Editor toolbar. This produces a copy of
the workflow process with the Version property incremented to 1 higher than the
current maximum version number for that workflow process.

•

Chapter 19

[369]

The new version's status is now In Progress and we can make changes to it. The
publish–activate cycle must be repeated for each new version of a workflow process.
Once we publish the new version in Siebel Tools, the Status property of older
versions is set to Not In Use.

Managing workflow processes
The Repository Workflow Process view allows us to see all workflow processes in
the Siebel Repository that have a status of Completed.

Once the workflow process is activated, and subsequently copied to the data tables,
we can see and modify it in the Active Workflow Processes list applet at the bottom
of the view.

The following screenshot shows the Active Workflow Processes list applet:

The following table describes some of the columns in the Active Workflow Processes
list and the possible settings for workflow processes:

Column Description
Version The version of the workflow process in the database tables.
Repository Version The version of the workflow process in the repository.
Deployment Status The status of the workflow process. Possible values:

Active: The workflow process is active
Inactive: The workflow process has been deactivated by
the administrator by selecting Deactivate Process from the
applet menu
Outdated: There is a newer active version of the same
workflow process

Note: Only one version of a workflow process can be active at any
time.

•

•

•

Siebel Workflow

[370]

Column Description
Monitoring Level Controls how much information is stored when a workflow process

instance is executed. Possible values:
0 - None: No monitoring is taking place
1 - Status: Information such as start and end time for each
process instance is stored in the database
2 - Progress: Records level 1 information plus information
about each step instance
3 - Detail: Records level 2 information plus process
property information once the workflow process is
completed
4 - Debug: Writes level 3 information after each step

Information about where to view the monitoring data is provided
later in this section.

•

•

•

•

•

Replication Level Controls the synchronization of the workflow process to mobile
clients via Siebel Remote. Possible values:

None: The workflow process is not synchronized to
mobile clients
All: The workflow process is synchronized to
mobile clients
Regional: Only replication servers are synchronized

•

•

•

Activation Date/
Time
Expiration Date/
Time

These timestamps control when the workflow process becomes
available. If not set, the workflow is always available.

Viewing workflow process instance data
When the monitoring level (described in the above table) of an active workflow
process is set to 1 - Status or higher, we can use the Workflow Instance Monitor
views in the Administration - Business Process screen to review the recorded data.

In the Process Instances view, we can review the list of recorded instances for each
workflow process.

When the monitoring level is set to 2 - Progress or higher, we can use the Step
Instances view to see all steps for a given workflow process instance. This view also
provides a list of all process property values for each step when the monitoring level
for the workflow process is set to 3 - Detail or 4 - Debug.

Chapter 19

[371]

The following screenshot shows the Step Instances view in the Workflow Instance
Monitor category of the Administration - Business Process screen in the Siebel
Web Client:

The screenshot does not show the Process Properties list applet at the bottom of
the view.

The Aggregate Data view provides a chart applet that aggregates the workflow
process instances by their status.

Invoking workflow processes
Workflow process definitions are always executed by the Workflow Process
Manager business service. So when the question arises as to how to invoke workflow
processes, we can rely on our knowledge on how to invoke a business service
method. In Chapter 17, we already pointed out the invocation techniques for business
services. For convenience the following shortened list conveys the most important
invocation mechanisms for workflow processes:

Workflow policies: These can be defined by an administrator in the Workflow
Policies view of the Administration - Business Process screen. A workflow
policy consists of a set of conditions and a set of actions, which are executed
when all conditions are satisfied. Workflow policies require additional
server-side configuration steps that are out of the scope of this book.
Runtime events: These and their associated action sets are a real-time
mechanism to invoke business service methods, and subsequently workflow
processes, when the application engine registers an event on the application,
applet, or business component level. In the next section, we will provide an
example of how to use runtime events to execute workflow processes.

•

•

Siebel Workflow

[372]

Buttons and menu items: These are often configured in conjunction with
the Named Method user property on applets or business components to
invoke business service methods, of course including the Workflow Process
Manager's RunProcess method.
Scripts: In Siebel scripts, to be discussed in upcoming chapters, we can
use the Workflow Process Manager business service as a means to invoke
workflow processes. The scripts can be useful to provide handcrafted input
property sets and process the output property set of the Workflow Process
Manager.

Case study example: Defining runtime
events
The following procedure describes how to define a runtime event in a workflow
process. In our scenario, we will invoke the AHA Synchronize Customer
Documents workflow process every time an account record is updated:

1. In Siebel Tools, navigate to the AHA Synchronize Customer Documents
workflow process.

2. Click the Revise button in the WF/Task Editor toolbar to create a new
editable version.

3. Right-click the new version and select Edit Workflow Process to open
the editor.

4. Select the connector leading from the Start step.
5. In the Properties window for the connector, set the Name property of the

connector to Default.
6. Press Ctrl+A to add a new point to the connector.
7. Drag the new point downwards so that the connector is bent.
8. Drag a second connector from the Palettes window to the Start step and

ensure that it is correctly connected between the Start step and the first
business service step.

Using multiple connectors from the Start step ensures
that we can still invoke the workflow process from
other points in the application.

9. Press Ctrl+A to add a new point to the new connector and use the new point
to bend the connector upwards.

•

•

Chapter 19

[373]

10. In the Properties window, set the Name of the new connector to Update.
11. If necessary use the Ctrl+B or Ctrl+F keyboard shortcuts to move the text

along the connector.
Compare your work with the following screenshot:

12. Select the Update connector.
13. In the Properties window enter the following values (in the sequence

indicated):
Type: Condition
Event Object Type: BusComp
Event Object: Account
Event: WriteRecordUpdated

14. Save your changes.
15. Click the Publish/Activate button in the WF/Task Editor toolbar to mark the

workflow process as complete and copy it to the runtime tables.

Activating a workflow process that contains event definitions has the effect of
action sets and runtime event definitions being created automatically. We can
inspect this data by navigating to the Administration - Runtime Events screen. In
the Events view we can start a new query and type the following search string in any
text column:

[Updated] >= Today()

When we execute the query, we will see all event definitions that were recently
updated and we should be able to see the event we just defined in the workflow
process. The event is also associated with a freshly created action set definition,
which we can open by drilling down on the action set name.

The action set contains one action that invokes the Workflow Process Manager's
RunProcess method and passes the ID of the active workflow process.

To refresh the application's runtime event cache we can either restart the application
or select Reload Runtime Events from the Action Sets list applet menu.

°

°

°

°

Siebel Workflow

[374]

To test the runtime event configuration, we can navigate to the Accounts screen
and make changes to an account record in the AHA Test UI View. After stepping
off the modified record or by pressing Ctrl+S to save the record explicitly, the AHA
Synchronize Customer Documents workflow process should execute, which we
can verify when the list of Customer Documents is refreshed manually by using the
Alt+Enter keyboard shortcut.

Case study example: Decision steps and
Siebel operations
The following requirement can be used to learn how to use decision steps and Siebel
Operation steps in workflow processes: Each workflow process created for AHA
should be enabled to create an activity record for verification purposes. The activity
must be associated with the parent record and should only be created when the AHA
Create Activity process property is set to TRUE.

The following procedure describes how to extend the AHA Synchronize Customer
Documents workflow process with the decision logic described previously:

1. Navigate to the AHA Synchronize Customer Documents workflow process.
2. Check out or lock the workflow process if necessary.
3. In the WF/Task Editor toolbar, click the Revise button.
4. Observe that a copy of the workflow process is created automatically and

that the Version property is increased.
5. Open the new workflow process version in the editor.
6. In the Multi Value Property Window create a new process property with the

following values:
Name: AHA Create Activity
Default String: TRUE

7. Save your changes.
8. Delete the connector between the Synchronize step and the End step.
9. Position the End step below the Synchronize step.
10. Drag a Decision Point item from the Palettes window and drop it to the

right of the Synchronize step.
11. Position a Siebel Operation step below the Decision Point step.
12. Set the Name property of the Decision Point step to Create Activity?.

°

°

Chapter 19

[375]

13. Set the following properties of the Siebel Operation step:
Name: Create Activity
Business Component: Action
Operation: Insert

14. Drag the Connector item from the Palettes window to the editor repeatedly
to create the following branch connections:

From the Synchronize business service step to the Decision
Point step
From the Decision Point step to the Siebel Operation step
From the Decision Point step to the End step
From the Siebel Operation step to the End step

15. Rename the connector from the Decision Point step to the Siebel Operation
step to YES.CONDITION.

16. Use the Ctrl+B and Ctrl+F keyboard shortcuts to position the branch label.
17. Rename the connector from the Decision Point to the End step to

NO.DEFAULT and position the label so that it is readable.
18. Compare your work with the following screenshot:

19. Double-click the YES.CONDITION connector. The Compose Condition
Criteria dialog opens.

20. In the Compose a Condition section, enter the following values:
Compare to: Process Property
Operation: All Must Match (Ignore Case)
Object: AHA Create Activity

21. Click the New button to the right of the Values field.
22. In the Add Values dialog enter TRUE.
23. Click OK to close the Add Values dialog.

°

°

°

°

°

°

°

°

°

°

Siebel Workflow

[376]

24. Click the Add button in the Compose Condition Criteria dialog to add the
new condition to the Conditions list on top of the dialog.

25. Compare your work with the following screenshot:

26. Click OK to close the Compose Condition Criteria dialog.
27. Select the NO.DEFAULT connector and set its Type property value to Default.
28. Save your changes.
29. Select the Siebel Operation step.
30. In the Multi Value Property Window, select the Field Input Arguments tab

and create new records according to the instructions in the following table:

Field Name Type Value
Type Literal Administration (select from

pick list)
Description Literal Customer documents have

been synchronized.
Due Expression TimeStamp()

31. Save your changes.
32. Validate the workflow process and correct any errors.
33. Simulate the workflow process with a test account as described in a

previous section.
34. Once the simulation proves that a new activity record is created for the

account, click the Publish/Activate button to mark the workflow process
as complete and activate it in your developer database.

Chapter 19

[377]

A Siebel Tools archive file (AHA Synchronize Customer Documents(2).sif) is
available with this chapter's code file. The file represents the workflow process after
the changes made in the preceding section.

In the above procedure we learned how to use the Decision Point step to evaluate
conditions and how to use the Siebel Operation step to interact with business
components. In the following sections, we will discuss some important details for
each step type.

Understanding decision point steps
We can use a decision point step to evaluate conditions and select one of its
originating branches. It is important to understand that the conditions are stored
within the branches, or connectors, themselves (not in the Decision Step).

As we have seen in the previous example procedure, we can double-click a connector
that originates from a decision point step to open the Compose Condition Criteria
dialog. Alternatively, we can right-click the connector and select Edit Conditions….

The Compose Condition Criteria dialog allows us to specify one or more conditions,
which all must evaluate to true to allow the Workflow Process Manager to choose the
connector and subsequently the next step in the workflow process.

In the Compare To drop-down box, we can choose the type of object that provides
the values for comparison. The choices are:

Applet
Business Component
Process Property
Expression

By selecting Applet or Business Component as the object type, we can specify an
applet or business component name from the Object drop-down list. We must also
specify a field of the applet's business component or of the business component itself
that provides the value for comparison.

As shown in the previous example procedure, we can also select one of the
process properties.

If we choose Expression in the Compare To dropdown box, we can specify a
freeform expression in Siebel Query Language for evaluation.

The Operation drop-down list allows selection of one of various operators such as
All Must Match, Greater Than, and Is Not Null.

•

•

•

•

Siebel Workflow

[378]

The Compose Condition Criteria dialog has two sections—the Conditions list
on top and the Compose section on the bottom. We can edit or delete existing
conditions or add new conditions by clicking the appropriate buttons in the
Compose section.

We can create as many connectors leading from a decision step to other steps as
we need. Similar to case constructs in programming, one of the connectors can be
defined as the default connector by setting its Type property to Default. However,
we must be aware that conditions defined in connectors originating from a decision
point step must be unambiguous in nature.

Understanding Siebel Operation steps
We can best understand the Siebel Operation step type when we imagine it as
an invisible user. This is because we can use Siebel Operation steps to invoke
the same methods that are available to end users by means of applet buttons or
keyboard shortcuts.

Siebel Operation steps execute against a business component within the context of
the business object associated with the parent workflow process. This means that link
definitions drive the child record sets in the same way as when we operate with the
data in a Siebel view.

The following table compares the available operations, to be set in the Operation
property of a Siebel Operation step, against end user actions and describes them:

Operation End User Action Description
Insert Create a new record. Creates a new record for the business

component. Default values and other
properties of business component and field
influence the new record.

Field values for the new record must be
specified in the Field Input Arguments
tab of the Multi Value Property Window
(MVPW).

Chapter 19

[379]

Operation End User Action Description
Update Update fields and

step off the record.
Updates the currently active record set and
saves changes. Validation logic and other
properties of business component and field
influence the update behavior.

The Search Spec Input Arguments tab
of the MVPW can be used to create a
search specification to limit the record set
influenced by the update.

Field values are specified in the MVPW's
Field Input Arguments tab.

This operation has one output argument
named NumAffRows, which contains the
number of rows affected by the update
operation.

Upsert
("Update or Insert")

Query for a record
using search criteria.
When the record
exists, update it.
When no record
exists, create a new
record.

Uses the Search Spec Input Arguments list
in the MVPW to define the search criteria.

The Field Input Arguments tab defines
the field values for the insert or update
operation.

Besides the NumAffRows output argument,
the Upsert operation has an IsInsert output
argument, which has a value of true when a
new record has been created.

Delete Delete one or more
records.

Uses the Search Spec Input Arguments list
to identify records to delete.

Query Query for records. The Search Spec Input Arguments tab of
the MVPW must be used to create the search
specification.

After the step is executed, the business
component instance represents the record
set.

Siebel Workflow

[380]

Operation End User Action Description
QueryBiDirectional Query for records. The main difference between this operation

and the Query operation is that the record
set created using the Query operation only
allows navigation from the first to the last
record (forward) and not backward.
The QueryBiDirectional operation results in
a record set that can be traversed forward
and backward.
This operation should only be used when
we intend to use the PrevRecord operation
(see below).

NextRecord Navigate to the next
record in the record
set.

Typically preceded by a Query or
QueryBiDirectional operation, the
NextRecord operation activates the next
record.
The value of true of the NoMoreRecords
output argument indicates that the end of
the record set has been reached.

PrevRecord Navigate to the
previous record in a
record set.

Must be preceded by a QueryBiDirectional
operation and navigates backward in the
record set.
Also provides a NoMoreRecords output
argument to check if the first record of the
set has been reached.

In the next chapter, we will learn how to traverse a record set
using the Siebel Operation step.

Case study example: Replacing applets on
the AHA Customer Process Start View
Because we have now implemented the logic to synchronize the customer documents
list as required by AHA, we can finalize our work on the AHA Customer Process
Start View by replacing the applets as follows:

Chapter 19

[381]

Replace this applet with this applet
Account Activity List Applet AHA Data History List Applet
Account Contact List Applet AHA Customer Documents List Applet

After compiling the view, we can test it by verifying that the AHA Customer
Documents List Applet displays a list of customer documents after an update to the
parent account record.

It may be beneficial to use the Siebel Sample Database to test the view because
this database contains a variety of test data such as accounts with associated
opportunities, quotes, orders and responses.

A Siebel Tools archive file (AHA Customer Process Start View.sif) is available
with this chapter's code files. The file represents the AHA Customer Process Start
View after the changes suggested in the preceding section.

Summary
The Siebel Workflow framework provides a graphical editor and declarative
workspace in Siebel Tools to define program flows that can be triggered by a
simple business service invocation.

In this chapter, we introduced essential facts about Siebel Workflow processes,
their step types, and properties along with real-life examples.

In the course of this chapter, we learned how to use predefined business services,
decision steps, and Siebel operation steps to support business process requirements.

In the next chapter, we will explore advanced workflow topics such as exception
handling, subprocesses and loops.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Advanced Siebel
Workflow Topics

While we create program flows with the Siebel Workflow framework, we may find
ourselves in the situation where we wish to control the behavior of the workflow
process in case of errors. In other situations, it may be useful to reuse existing
workflows as subprocesses or to traverse record sets in a loop. For Siebel
developers, it is important to master these advanced topics to gain full
advantage of Siebel Workflow.

In this chapter, we will learn how to implement the following functionality in
Siebel Workflow:

Exception handling
Subprocesses
Loops and iterations
Advanced workflow techniques

Exception handling in workflow
processes
Those among us who are familiar with classic programming know how important
it is to handle erroneous situations within the program flow. Most modern
programming languages such as Java or C# provide this kind of exception handling.
Because Siebel Workflow is in fact a programming language, it is important to
understand how we can handle exceptions within a workflow process.

•
•
•
•

Advanced Siebel Workflow Topics

[384]

There are two techniques for exception handling in Siebel workflow processes:

Error exception connectors: Allow developers to handle the errors that occur
at the execution of a discrete workflow step
Error process: Allows specification of a specialized workflow process to be
executed when an error occurs at any step of the original workflow process

In the following section, we will discuss both approaches.

Using error exception connectors
An error exception connector can be used to define the path in case of errors. In the
sense of programming, it resembles a catch block. Any process steps attached to the
exception connector will only be executed when the originating step fails. The Stop
step is frequently used as a final end point of an exception branch.

The Account - Get SAP 46C Order List workflow process, part of the standard Siebel
Repository and shown in the following screenshot, demonstrates the practical use of
exception connectors as well as the Stop and Wait step.

The steps labeled 1: Get data from Siebel and 3: Call BAPI are the origin of an exception
connector. The first occurrence ends directly in a Stop step (Error: No Data). The
second exception branch executes a Wait step. When the Wait step fails due to a
time out, the second Stop step (Error: Timeout) is reached.

•

•

Chapter 20

[385]

Using stop steps
Stop steps are useful when an error message should be displayed (or written to the
log file). A Stop step's main property is Error Code, which defines the translatable
error message. When we define a Stop step, we can choose from a list of predefined
error codes. The full list of error codes can be inspected by navigating to the Screens
menu in Siebel Tools, then choosing System Administration | Analytic Strings.

Did you know?
The label Analytic Strings is used in Siebel Industry Applications (SIA)
8.1. A different label may be used in older versions. It is a reminder
of the fact that Siebel Analytics, the predecessor of Oracle Business
Intelligence Enterprise Edition, used the Siebel message list for storing
translatable strings.

Any entry in the messages list with an Error Symbol can be used in the Stop step.
The following screenshot shows a portion of the available error messages:

When we inspect the we inspect the Message Text more closely, we find that it contains
placeholders in the format %1. At runtime we can replace these placeholders with
real text, for example the name of an object or data from the business component.

A special group of messages is provided for customer use. These messages have an
Error Symbol starting with WF_ERR_CUSTOM_ followed by a number. Their Message
Text consists only of the %1 placeholder, which makes them perfect for creating
custom messages with a free choice of text.

Case study example: Creating an error
exception with a stop step
The following procedure describes how to add an error exception connector and
a Stop step with a custom error message to the AHA Synchronize Customer
Documents workflow process:

1. Navigate to the AHA Synchronize Customer Documents workflow process.
2. Check out or lock the project containing the workflow process if necessary.

Advanced Siebel Workflow Topics

[386]

3. Create a revised version of the workflow process if necessary.
4. Open the workflow process in the editor.
5. From the Palettes window drag a Stop step and position it above the

decision step.
6. From the Palettes window drag the red Error Exception connector and drop

it on the Synchronize step.
7. Connect the beginning of the Error Exception connector to the x connection

point on top of the Synchronize step.
8. Connect the end of the Error Exception connector to the Stop step.
9. Compare your work with the following screenshot:

10. Select the Stop step and enter the following in the Properties window:
Name: Stop
Error Code: WF_ERR_CUSTOM_1

11. Save your changes.
12. In the Multi Value Property Window, create a new record with the

following values:
Name: %1
Type: Expression
Value: "The following error occurred during synchronization:
" + [&Error Message]

13. Save your changes.
14. Validate the workflow process.

When an error occurs during the Synchronize step, the Stop step will be executed
and the message displayed will be the result of the expression specified as the
replacement text for the %1 placeholder. As shown in step 12 of the example
procedure above, we can reference process properties by using square brackets,
[and], and an ampersand, &, before the property name. It is worth mentioning that
this technique would only work in a monolingual environment because the text in
double quotes is not translated.

°
°

°
°
°

Chapter 20

[387]

A Siebel Tools archive file (AHA Synchronize Customer Documents(3).sif) is
available with this chapter's code files. The file represents the AHA Synchronize
Customer Documents workflow process after the changes in the preceding section.

Using error processes
There are various situations which could require creating exception connectors from
every step within a workflow process. This would result in a very cluttered and
unreadable flow diagram.

To overcome this, we can specify the logic in the case of errors, for example by
writing the error message to a file or cleaning up in a simple workflow process and
associating it as the Error Process (the name of the property) to any other workflow
process. By doing so, we reach a very high level of reusability.

An error process inherits all values from the calling workflow process if process
properties exist with the same names in both process definitions. This also applies
of course to the preconfigured process properties such as Error Message.

The ISSErrorHandler workflow process, serving as the error process for several
standard workflow processes in the Siebel Data Quality module, for example, uses
the EAI File Transport business service to write various process property values to
a text file.

The following screenshot shows the ISSErrorHandler workflow process:

The Write to Error Log step, invoking the Send method of the EAI File Transport
business service, is selected and a portion of the expression builder is visible.
The expression concatenates the current time stamp, the error code, and the error
message of the calling workflow process. Subsequently, the concatenated string is
written to a file.

Advanced Siebel Workflow Topics

[388]

Subprocesses
Reusability of business logic is a key success factor for any software project,
including Siebel CRM projects. The Sub Process step ensures that we can invoke
often needed process flows from within another workflow process easily.

Subprocesses can not only help to increase the level of reusability but are also needed
when more than one business object is involved in the process. As we have learned
in the previous chapter, a workflow process can only be associated with
one business object, which provides the context, and links, to the business
component data.

If we need to operate on more than one business object, we must implement a
subprocess. The Account - New Quote workflow process, associated with the
Account business object, is a simple but very explanatory example of this. The
following screenshot shows the Account - New Quote workflow process:

The Goto Quote View step is a Sub Process step. The main property of a Sub
Process step is Subprocess Name, which is set to the name of a workflow process
that is invoked at this step. Data can be exchanged between the parent and the child
workflow process by means of the Input Arguments and Output Arguments tab in
the Multi Value Property Window.

We can double-click a Sub Process step in the workflow process editor to open the
subworkflow process in a new editor window. The following screenshot shows the
Goto_Quote workflow process, which is the workflow process referenced by the
Goto Quote View step in the Account - New Quote workflow process:

Inspection of the Business Object property of the Goto_Quote workflow process
shows that it runs in the context of the Quote business object. The purpose of this
workflow process lies within the User Interact step labeled Goto Quote Line Item,
which opens the Quote Item Detail View. This view is associated with the Quote
business object, hence the necessity to implement the view navigation in a
separate subprocess.

Chapter 20

[389]

Did you know?
As indicated previously, the User Interact step type can be used to
accomplish view navigation. Because this only makes sense in user-facing
workflow processes, the Workflow Mode property of the workflow
process must be set to Interactive Flow.

Loops and iterations
A common task for programmers is to create loops or iterations across a record set
and operate on each record. The Siebel Workflow Framework supports looping
constructs with the Siebel Operation step. The following case study example shall
serve as an example of a loop in Siebel Workflow.

Case study example: Iterations on a child
record set
AHA managers want to be able to see the currently expected revenue for a customer.
The implementation should include a button on the AHA Customer Profile Form
Applet that invokes a workflow process. The workflow process should query all
opportunities for the account that have a close date in the next 30 days and sum up
the expected revenue of these opportunities. A message dialog should then display
the result.

The following procedure describes how to implement this requirement using Siebel
Operation and Stop steps:

1. Check out or lock the AHA Workflows project if necessary.
2. Create a new workflow process with the following property values:

Name: AHA Get Projected Revenue
Project: AHA Workflows
Business Object: Account

3. Open the AHA Get Projected Revenue workflow process in the editor.

°
°
°

Advanced Siebel Workflow Topics

[390]

4. In the Multi Value Property Window (MVPW) create the following Process
Properties:

Name Data Type Default Number Default String
AHA Currency Code String
AHA Current Revenue Number 0
AHA Record Count Number 0
AHA Last Record String false
AHA Total Expected
Revenue

Number 0

AHA Number Of Days Number 30
AHA Minimum
Expected Value

Number 0

5. Save your changes.
6. Using the Palettes icons, create a workflow layout similar to the following

screenshot. Set the Name property for each step and connector according to
the screenshot:

7. Select the Query Oppty Data step and set the following values in the
Properties window:

Business Component: Opportunity
Operation: Query

8. In the MVPW navigate to the Search Spec Input Arguments tab and create a
new record with the following values:

Expression Business Component: Opportunity
Filter Business Component: Opportunity
Type: Expression

°
°

°
°
°

Chapter 20

[391]

Search Specification: "[Primary Revenue Expected Value]>=" +
[&AHA Minimum Expected Value] + " AND [Primary Revenue Close
Date] <= Today()+" + [&AHA Number Of Days] + " AND [Primary
Revenue Close Date] >= Today()"

The preceding search specification expression queries for all opportunity
records that have an expected revenue – represented by the Primary
Revenue Expected Value field – equal to or greater than (>=) the value of
the AHA Minimum Expected Value process property, which defaults to zero.
The close date, represented by the Primary Revenue Close Data field, must
be within the period between the current date, returned by the Today()
function, and the number of days specified by the AHA Number Of Days
process property.

9. In the MVPW select the Output Arguments tab and create the following
records:

Property Name Type Output
Argument

Business
Component

Business
Component Field

AHA Record
Count

Output
Argument

NumAffRows

AHA Total
Expected Revenue

Business
Component

Opportunity Primary Revenue
Expected Value

AHA Currency
Code

Business
Component

Opportunity Currency Code

The previous output arguments define the following:

The number of rows in the query result set will be saved to the AHA
Record Count process property
The value in the Primary Revenue Expected Value field of the
first opportunity record will be saved to the AHA Total Expected
Revenue process property
The value in the Currency Code field of the first opportunity record
will be saved to the AHA Currency Code process property

10. Save your changes.
11. Double-click the YES.DECISION connector leading from the No Data

decision step and specify the following condition:
Compare To: Process Property
Object: AHA Record Count
Value: 0 (zero)
Operation: All Must Match (Ignore Case)

°

°

°

°

°
°
°
°

Advanced Siebel Workflow Topics

[392]

12. Select the Stop (No Data) step and specify WF_ERR_CUSTOM_1 as the
value for the Error Code property.

13. In the Input Arguments tab of the MVPW, create a new record with the
following values:

Name: %1
Type: Expression
Expression: "No Opportunities found with an expected revenue
of more than " +[&AHA Minimum Expected Value] + " and a close
date between today and " + (Today()+[&AHA Number Of Days]) +
"."

The above expression concatenates static text with values of process
properties and the Today() function to a message text. Because the Stop
step is only reached when the AHA Record Count process property is zero,
the message is only displayed when there are no opportunity records for
the current account that match the search specification in the Query Oppty
Data step.

14. Select the NO.DEFAULT connector leading from the No Data decision step
and set its Type property to Default.

15. Save your changes.
16. Double-click the YES.DECISION connector leading from the Last Record?

decision step and specify the following condition:
Compare To: Process Property
Object: AHA Last Record
Value: true
Operation: All Must Match (Ignore Case)

17. Select the Stop (Message) step and specify WF_ERR_CUSTOM_2 as the value for
the Error Code property.

18. In the Input Arguments tab of the MVPW, create a new record with the
following values:

Name: %1
Type: Expression
Expression: "Total expected revenue for the customer account
is " + [&AHA Currency Code] + " " + [&AHA Total Expected
Revenue] + "."

The preceding expression concatenates static text with values of process
properties to a message text, which is displayed after the loop has reached
the last record.

°
°
°

°
°
°
°

°
°
°

Chapter 20

[393]

19. Select the NO.DEFAULT connector leading from the Last Record? decision
step and set its Type property to Default.

20. Save your changes.
21. Select the Go to next Oppty step and set the following values in the

Properties window:
Business Component: Opportunity
Operation: NextRecord

22. In the Output Arguments tab of the MVPW, create the following records:

Property
Name

Type Value Output
Argument

Business
Component

Business
Component
Field

AHA
Current
Revenue

Business
Component

NumAffRows Opportunity Primary
Revenue
Expected
Value

AHA Total
Expected
Revenue

Expression (see the
following)

AHA Last
Record

Output
Argument

NoMoreRecords

The Value for the expression to populate the AHA Total Expected Revenue process
property must be set to:

[&AHA Total Expected Revenue] + [&AHA Current Revenue]

This adds the expected revenue of the current opportunity record to the AHA
Total Expected Revenue process property value. While the loop executes,
the AHA Total Expected Revenue process property will aggregate the sum of
the expected revenue values for all records.

1. Save your changes.
2. Validate the workflow process.
3. Log on to the Siebel Developer Web Client and create a test account record

with at least two opportunities. Ensure that the opportunity records have
the revenue and probability fields populated with meaningful values. Also
set the close date field to a date between the current date and 30 days in
the future.

4. Record the ROW_ID value of the test account record.
5. Log out of the Developer Web Client.

°
°

Advanced Siebel Workflow Topics

[394]

6. Set the recorded ROW_ID as the Default String value for the Object Id
process property and save the workflow process.

7. Simulate the workflow process and observe its behavior in the
Watch window.

The workflow process created in the previous example procedure implements
the following:

1. The Query Oppty Data step executes a query among the opportunity records
associated with the active account record.

2. When the result set is empty, a message is displayed and the workflow
process stops.

3. When the query returns data, the workflow process iterates through the
record set and uses the AHA Total Expected Revenue process property to
store the sum of the expected revenue values.

4. After the last record has been processed, a message displays the total
expected revenue and the workflow process stops.

A Siebel Tools archive file (AHA Get Projected Revenue.sif) is available with this
chapter's code files. The file represents the AHA Get Projected Revenue workflow
process created in the previous section.

To finalize the requirement, we should create a button control on the AHA Customer
Profile Form Applet. The method invoked by the button should be handled at
the business component level by means of a new instance of the Named Method
business component user property. Please refer to Chapter 16, Menus and Buttons for
instructions on how to create an applet button that invokes a workflow process.

Advanced workflow techniques
On several occasions, the ambitious workflow developer will reach a point where the
functionality of standard workflow steps such as Siebel Operation is not sufficient to
implement the requirements.

Engineers at Siebel Systems and Oracle have developed more than 1,300 workflow
processes and created the following business services to assist during the workflow
development cycle:

Workflow Utilities
SIA BC Utility Service
PRM ANI Utility Service

•
•
•

Chapter 20

[395]

In addition, we can use one of the following EAI transport business services to easily
write data to files for debugging purposes.

EAI XML Write to File
EAI File Transport

In the following section, we will briefly introduce the methods of these business
services and provide examples for their usage.

Workflow Utilities
The Workflow Utilities business service has one public and four hidden methods.
Because the public Echo method is the only one that is used in the preconfigured
workflow processes, it is the only method to be discussed in this section.

The Echo method is designed to serve as a step in a workflow process at which
developers can use the Input and Output Arguments list to operate on the current
set of process properties.

We can find a typical example of such operations in the eMail Response - Identify
Language workflow process. The Set Language Code CHS business service step
uses the Echo method to set the MsgLanguageCode process property to CHS as
an output argument. The following screenshot shows the Properties window and
MVPW for this step:

Even if the manipulation of process properties could be accomplished in other
workflow process steps, it is recommendable to utilize the Echo method of the
Workflow Utilities business service because of the optimized transparency and
readability of the workflow process itself.

•
•

Advanced Siebel Workflow Topics

[396]

Later in this section, we will implement a workflow step with the Workflow Utilities
business service.

SIA BC Utility Service
As the name suggests, the SIA BC Utility Service is only available in Siebel Industry
Applications (SIA) and supports developers who want to interact with business
components (BC).

The business service has found wide adoption in the Siebel developer community
and has two methods:

BCInvokeMethod

BCNextRecord

The BCInvokeMethod method allows us to specify the name of a business component
and a method to be invoked. A typical usage scenario for this method is to invoke
the RefreshBuscomp method on a business component after the data of the business
component has been modified.

The BCNextRecord method can be used to iterate through a record set and has the
following arguments:

Name Type Description
Business Component
Name

Input The name of the business component to query.

Search Specification Input Search criteria for the query.
Forward Only Input When set to Y, the query returns a record set that

only supports navigation to the next record.
From First Input When set to Y, the query will be executed from the

first record in the business component's record set.
When set to N, the method will navigate to the next
record in the record set.

Row Id Output The ROW_ID value of the current record of the
record set.
A null value indicates that no more records are in the
record set.
This output argument is typically used to implement
the loop by checking it for null in a decision step
branch.

•

•

Chapter 20

[397]

A working example of the BCNextRecord method can be found in the HTIM SPA
Enhanced Approval Workflow in the SIA Repository. The relevant portion of the
workflow process is shown in the following screenshot:

The Query Quote Item BC step implements the BCNextRecord method of the SIA
BC Utility Service. The Yes branch of the More Quote Items? decision step checks
the Siebel Operation Object Id process property, used to take the Row Id output
argument, to verify if there are more records in the query result set.

The SIA BC Utility Service can be useful for working with business components.
However, we should also consider the functionality of the Siebel Operation step
when the requirement includes iterations over a record set.

PRM ANI Utility Service
The PRM ANI Utility Service originates in the Siebel Partner Relationship
Management (PRM) application. This business service has specialized methods for
creating and manipulating hierarchical process properties that are typically used in
EAI scenarios.

Advanced Siebel Workflow Topics

[398]

The methods of the PRM ANI Utility Service are described in the following table:

Method Description
CreateEmptyPropSet This method creates a new hierarchical property set by using

the definition of an integration object, passed as the value of the
Hierarchy Name input argument, as the template.

SetProperty Allows setting a property in the hierarchical property set.
GetProperty Allows reading a value from a property in the hierarchical

property set.
SetChildType This method can change the Type property of one or more child

property sets in the hierarchy.
GetChildType This method allows reading the Type property from one or more

child property sets in the hierarchy.

Source: Siebel Partner Relationship Management Administration Guide, Version 8.1:

http://download.oracle.com/docs/cd/E14004_01/books/PRMAdm/booktitle.
html

Various prebuilt workflow processes such as the Transfer Cart Outbound Create
Header Process use the PRM ANI Utility Service.

EAI XML Write to File
When working with hierarchical process properties we may find it beneficial to be
able to inspect the property sets as a whole instead of trying to locate the property
value in the Watch window during debugging.

The prebuilt EAI XML Write to File business service can serve as a vehicle to quickly
write an entire hierarchical property set to an XML file for inspection.

The following methods are available in the business service:

WritePropSet: Can be used to write any property set to a file.
WriteXMLHier: Accepts only property sets with a Type of XMLHierarchy.
WriteEAIMsg: Accepts only property sets with a Type of SiebelMessage.
Property sets of this type are created by the EAI Siebel Adapter business
service methods and by the EAI Data Transformation Engine as well as
various other business services in the EAI sector.

•
•
•

Chapter 20

[399]

The following example procedure describes how to use the EAI XML Write to
File business service to write data to an XML file. The example uses the AHA
Synchronize Customer Documents workflow process:

Ensure that the AHA Workflows project is checked out or locked.
Navigate to the AHA Synchronize Customer Documents workflow process.
Create a revised version of the workflow process.
Open the new version in the workflow process editor.
Delete the connector between the Map and the Synchronize step.
Align the workflow process steps so that there is enough space to place a
new business service step between the Map and the Synchronize step.
From the Palettes window drag-and-drop a business service step between
the Map and the Synchronize step.
In the Properties window, set the following values:

Name: Write File
Business Service: EAI XML Write to File
Business Service Method: WriteEAIMsg

9. Save your changes.
10. In the Input Arguments tab of the MVPW create two records as follows:

Input Argument Type Value Property Name
FileName Literal C:\TEMP\Target_Data.xml

SiebelMessage Process
Property

AHA Target Data

11. Save your changes.
12. Connect the workflow process steps using the Connector icon from the

Palettes window.
13. Save and validate the workflow process. Correct any reported errors or

warnings.
14. Simulate the workflow process. An XML file should be created in the path

specified by the FileName input argument. The file contains the XML
representation of the customer data after the mapping to the AHA
Customer Documents Source IO integration object.

1.
2.
3.
4.
5.
6.

7.

8.
°
°
°

Advanced Siebel Workflow Topics

[400]

It is important to mention that writing data to files like in the preceding scenario is
intended for the development cycle and for debugging purposes only. Before the
workflow process is published the production environment we must remove these
steps to avoid performance issues.

A Siebel Tools archive file (AHA Synchronize Customer Documents(4).sif) is
available with this chapter's code files. The file represents the AHA Synchronize
Customer Documents workflow process after the changes in the preceding section.

EAI File Transport
The EAI File Transport business service's Send method can be used to write simple
text messages to a file. The Send method has the following input arguments:

FileName: Specifies the path to write the file to.
<Value>: The text to write to the file. The method writes everything in the
Value property to the file.
AppendToFile: When set to true, the text in the Value property will be
appended at the end of the file. When set to false, any file with the same path
will be overwritten.

Case study example: Using dot notation to
access hierarchical data
Working with hierarchical process properties can be challenging. In some situations
it might be necessary to fetch the value of a specific property that is deep inside the
hierarchy.

In the following example procedure, we explain how to use the dot notation, which
is named after the technique of using dots to separate element names, to access
data in a hierarchical process property. The example extends the AHA Synchronize
Customer Documents workflow process to read the value of the customer service
number (CSN) field for later use:

1. Ensure that the AHA Workflows project is checked out or locked.
2. Navigate to the AHA Synchronize Customer Documents workflow process.
3. Create a revised version of the workflow process.
4. Open the new version in the workflow process editor.
5. Create a new process property named AHA CSN.

•
•

•

Chapter 20

[401]

6. Insert a Business Service step between the Get Account Docs and the
Map step.

7. In the Properties window, enter the following values for the new business
service step:

Name: Read CSN
Business Service: Workflow Utilities
Business Service Method: Echo

8. Save your changes.
9. In the Input Arguments tab of the MVPW create a record with the

following values:
Input Argument: EchoData
Type: Process Property
Property Name: AHA Source Data

10. In the Output Arguments tab of the MVPW create a record with the
following values:

Property Name: AHA CSN
Type: Output Argument
Output Argument: EchoData.ListOfAHA Account Documents
Source IO.Account.CSN

The preceding string uses dot notation to access the CSN field in the Account
integration component. The elements between the dots are the Type of
the property sets. To correctly reference a property within a hierarchy of
property sets we must use the Type property's value of each element in the
hierarchy and separate them by dots. The last element is the name of the
property to read. We can investigate the correct path by using the file export
technique described in the previous section or by using the Watch window.

11. Save your changes.
12. Connect all steps.
13. Save and validate the workflow process. Correct any errors or warnings.
14. Run the workflow process in the simulator and use the Watch window to

verify that the AHA CSN process property is populated with the CSN of the
current customer account.

A Siebel Tools archive file (AHA Synchronize Customer Documents(5).sif) is
available with this chapter's code files. The file represents the AHA Synchronize
Customer Documents workflow process after the changes in the previous section.

°
°
°

°
°
°

°
°
°

Advanced Siebel Workflow Topics

[402]

Summary
Siebel developers face several challenges while implementing workflow processes
in Siebel Tools. In this chapter, we provided information about popular advanced
techniques for configuring workflow processes.

Efficient exception handling is a key issue in programming and workflow
development. We learned how to use the error exception connector and error
processes to implement exception handling in Siebel Workflow.

Subprocesses, also shown in this chapter, allow implementation of
reusable processes.

Furthermore we discovered the Siebel Operation step's ability to iterate through
record sets and learned how to use preconfigured utility business services and dot
notation to work with hierarchical property sets.

In the next chapter, we will learn how to implement Tasks to guide end users
through business processes.

Siebel Task User Interface
End users in large corporations often find themselves challenged by complex and
lengthy business processes, many of which have to be carried out in Siebel CRM
applications. To provide guidance through these business processes, Siebel CRM
features the Task User Interface (UI). Siebel developers must thoroughly understand
how to create and publish tasks, to mention two of the main topics in this chapter.

The chapter is structured as follows:

Understanding the Siebel Task UI
Creating task applets and task views
Creating tasks
Publishing, activating, and administering tasks
Using applet messages

Understanding the Siebel Task UI
The Siebel Task UI is available in Siebel versions 8.0 and higher and is intended to
guide end users through business processes while maintaining the highest level of
data quality and process consistency. Task UI is available for the High-Interactivity
(HI) client only and consists of the following components:

Task Editor: A flowchart editor in Siebel Tools serves as the developer's
workbench to create and modify task flows.
Tools Wizards: Developers can use wizards in Siebel Tools to create tasks,
task views, task applets, and transient business components.
Administrative views: Administrators can activate and associate tasks with
responsibilities in several administrative views in the Siebel Web Client.

•

•

•

•

•

•

•

•

Siebel Task User Interface

[404]

Task Pane: Situated on the left-hand side of the Siebel UI, the task pane
allows end users to see tasks to which they have access to and invoke them
by clicking on the task name. When a task executes, the task pane shows the
current step of the task.
Task Player: Replaces the standard UI with the task views when a task
is executed.

The following screenshot shows one of the preconfigured tasks of Siebel SIA
8.1.1, Email Treatments, executed in Siebel Marketing:

The task pane shows the current step (Create Email Treatment). The task view
in the player allows the end user to enter data for a new e-mail treatment.
Integration with Siebel Universal Inbox: Tasks can be automatically or
manually paused and then resumed by clicking on an item in the user's
Inbox list.

The preceding list shows that Siebel Task UI involves end user, administrator, and
developer roles. To gain a better understanding of the Task UI and its related objects,
we will discuss them in greater detail in the next section.

Tasks and related repository objects
The Object Explorer in Siebel Tools provides access to the Task object type. A Task
object definition consists of the following main elements:

Task Property: Similar to workflow process properties; serve as local
variables during task execution. They can be used to hold and pass values
between task steps.

•

•

•

•

Chapter 21

[405]

Task Step: This includes types we are already familiar with such as Siebel
Operation, Decision Point, and Business Service. The most important step type
however is Task View, which is bound to a specialized view definition.
Task Chapter: Each task step is associated with a task chapter to provide
consistent end user guidance.

Tasks are created and modified in Siebel Tools by means of the task editor. The task
editor uses the same technology as the workflow process editor, which is a benefit
for developers who are familiar with the latter.

The following screenshot shows the Email Treatment task opened in the Siebel Tools
task editor:

The screenshot shows a portion of the task flow in the editor canvas as well as the
Properties window and the Multi Value Property Window. We can see familiar
step types such as Siebel Operation and the task-specific Task View types
(rounded shapes).

•

•

Siebel Task User Interface

[406]

In addition to the Task object type, we find the following object types, or variants
thereof, in the Siebel Repository:

Task Group
View Task Group (child element of the View type)
Task View (special type of view)
Task Applet (special type of applet)
Playbar Applet (special type of applet)
Transient Business Component (special type of business component)

Each task can be associated with one or more task groups. Task groups are
associated with standard views to control the contextual visibility of tasks within
the task pane.

Task views only differ from standard views in the value of their Type property,
which is set to Task, and in the fact that they are not directly associated with a
responsibility. Task views become available for an end user when the task itself is
associated to the end user's responsibility. Task views can make use of all standard
applets and applet types such as task applets, and playbar applets (the latter two are
only available for task views).

Task applets are created for the sole purpose of displaying data or soliciting input
from the end user in a task flow. Their Type property is set to Task and they cannot
be used in standard views. Task applets exclusively reference transient business
components, a specialized class of business components.

The Siebel Repository contains preconfigured playbar applets. These applets only
contain the navigation buttons and must be added to each task view at least once
to enable the end user to navigate forward and backward in the task flow, pause, or
cancel the task.

Transient business components serve as the data provider for task applets
and can be distinguished from standard business components by their Type
property, which is set to Transient, their base table (S_TU_LOG) and their class
(CSSBCTaskTransient).

The following diagram illustrates the objects discussed in the preceding section and
their relationship to each other:

•

•

•

•

•

•

Chapter 21

[407]

From the diagram, we can summarize the following information:

A task contains one or more task views
A task view can utilize standard applets, task applets, and playbar applets
Task applets reference transient business components that use the
S_TU_LOG table to store data
Task groups are associated with standard views to provide UI context
Responsibilities control end user access to tasks

Case study example: Supporting a
business process with Task UI
As indicated in Chapter 3, the Sales – Retail Order business process should be
supported with Siebel Task UI. The following list describes the steps of the
process. Please refer to Chapter 3, Case Study Introduction for a full description
of the business process:

1. Query for the retail partner account.
2. If the query returns no results, create a new account.
3. If the Always Generate Quote flag is set to Y or is undefined, create a new

quote for the account.
4. If the flag is set to N, proceed to step 6.

•

•

•

•

•

Siebel Task User Interface

[408]

5. Verify the quote:
If the quote is acceptable, proceed to step 6
If the quote is not acceptable, cancel the quote and proceed to the end

6. Create an order.
7. Submit the order.
8. Create an activity to document the process.

In the following sections we will use example procedures to create a prototype task
for the business process described previously.

Creating task applets and task views
The AHA technical architecture team has conducted workshops with the end user
community and identified the following applets to be included in the task view
layouts for the steps of the business process:

Step Applet(s) Comments
1 AHA Partner Query Task Applet Create a new task applet (and transient

business component) that allows end
users to enter query criteria for the
following fields:

Name
CSN
City

•

•

•
2 AHA Customer Profile Form

Applet
Use the existing custom form applet.

3,5 Copy of Quote Form Applet Copy the Quote Form Applet and modify
the copy.

6,7 Copy of Order Entry - Order Form
Applet (Sales)

Copy the applet and modify the copy.

Preparation steps
The following activities must be completed to prepare the new Task UI. As the
developer tasks of creating fields and applets have already been discussed in
previous chapters of this book, please refer to these chapters for details. For the
sake of brevity, instructions are kept to a minimum.

°

°

Chapter 21

[409]

New business component field: AHA always
generate quote flag
The following shortened procedure describes how to create a new field for the
Account business component. The field will define whether a quote should always
be generated for a given account or not:

1. Create a new field for the Account business component with the following
characteristics:

Name: AHA Always Generate Quote Flag
Join: S_ORG_EXT_X
Column: ATTRIB_11
Predefault Value: Y

2. Expose the new field in the AHA Customer Profile Form Applet using a
checkbox control. Label the control Always Quote.

3. Compile the Account business component and the AHA Customer Profile
Form Applet.

New applet: AHA simple quote form applet
The following procedure guides us through the task of creating the AHA Simple
Quote Form Applet:

1. Copy the Quote Form Applet and rename the copy AHA Simple Quote
Form Applet.

2. Set the Project property of the AHA Simple Quote Form Applet to AHA
User Interface.

3. Delete the following items from the Edit web template: Revision, **Sales
Rep**, Service Account, Billing Account, Organization, Billing Profile,
Created, Due, Campaign, Agreement, Entitlement, Network, MRC Total,
NRC Total.

4. Rearrange the remaining items.
5. Remove the More flag from all items.
6. Delete the following buttons: Revise, Select Favorites, Submit, Auto Order,

ToggleLayout.

°

°

°

°

Siebel Task User Interface

[410]

7. Save your work and compare it with the following screenshot in
Preview mode:

8. Compile the AHA Simple Quote Form Applet.

New applet: AHA simple order form applet
The following procedure guides us through the task of creating the AHA Simple
Order Form Applet:

1. Copy the applet named Order Entry - Order Form Applet (Sales) and
rename the copy AHA Simple Order Form Applet.

2. Set the Project property of the AHA Simple Order Form Applet to AHA User
Interface.

3. Delete the Search Specification.
4. Delete the following items from the Edit web template: all items in More mode

except the Comments control, Revision, Opportunity.
5. Rearrange the remaining items.
6. Remove the More flag from the Comments control.
7. Delete the Revise and ToggleLayout buttons.
8. Change the caption of the Submit button to Submit Order.
9. Save your work and compare it with the following screenshot in

Preview mode:

10. Compile the AHA Simple Order Form Applet.

Chapter 21

[411]

New transient business component: AHA partner
query TBC
The following procedure describes how to create a new transient business
component to support a new task applet:

1. Create a new project named AHA Task UI and lock it.
2. Click the New button in the toolbar.
3. Double-click the Transient BusComp icon in the Task tab of the New Object

Wizards dialog.
4. Set the following values in the New Business Component page:

Project: AHA Task UI
Name: AHA Partner Query TBC

5. Click Finish.
6. Ensure that the new AHA Partner Query TBC business component is

selected in the Object List Editor.
7. Navigate to the Field list for the new business component.
8. In the Fields list, create three new records as follows:

Name Type Length
Partner Name DTYPE_TEXT 100
Partner CSN DTYPE_TEXT 30
Partner City DTYPE_TEXT 50

9. Observe that Siebel Tools populates the Column property automatically.
10. Compile the AHA Partner Query TBC business component.

New task applet: AHA partner query task applet
The following procedure describes how to create a new task applet using the Task
Applet wizard:

1. Click the New button in the toolbar.
2. In the Task tab of the New Object Wizards dialog, double-click the Task

Form Applet icon.
3. In the General page, set the following values:

Project: AHA Task UI
Name: AHA Partner Query Task Applet

°

°

°

°

Siebel Task User Interface

[412]

Display title: Partner Query
Task: (leave empty)
Upgrade behavior: Preserve
Transient business component: AHA Partner Query TBC

4. Click Next.
5. In the Web Layout - Fields page, select the following fields:

Partner Name
Partner CSN
Partner City

6. Click Next.
7. Click Finish.
8. The applet web layout editor opens automatically.
9. Arrange the controls as per the order of step 5.
10. Set the HTML Type property of all controls to Text.
11. Double the width of the Partner Name text box.
12. Save your changes and compare your work with the following screenshot:

13. Close the web layout editor.
14. Compile the AHA Partner Query Task Applet.

Two Siebel Tools archive files (Applets.sif and AHA Partner Query TBC.sif)
are available with this chapter's code files. The files represent the applets and the
transient business component created in the preceding sections.

°

°

°

°

°

°

°

Chapter 21

[413]

New task view: AHA partner query task view
The following procedure describes how to create a new task view using the Task
View wizard:

1. Click the New button in the toolbar.
2. In the Task tab of the New Object Wizards dialog, double-click the Task

View icon.
3. In the New View page, enter the following values:

Project: AHA Task UI
Name: AHA Partner Query Task View
Title: Partner Query
Business Object: Account
Upgrade behavior: Preserve

4. Click Next.
5. In the View Web Layout - Select Template page, select the View

Basic template.
6. Click Next.
7. In the Web Layout - Applets page make no selection.

We do not select any standard applet for this
task view.

8. Click Next.
9. Click OK to acknowledge the message that there are no tasks for the business

object.
10. In the Task View - Select Task page, click Next.
11. In the Task View - Task Applets page, select the AHA Partner Query Task

Applet in the Available Applets list.
12. Click the upper arrow button to add the AHA Partner Query Task Applet to

the Selected Applets list.
13. Click Next.
14. In the Task View - Select Playbar Applets page, select the Task Playbar

Applet - Top applet as the bottom playbar applet.
15. Click Next.
16. Click Finish.

°

°

°

°

°

Siebel Task User Interface

[414]

17. The view web layout editor opens automatically.
18. Right-click in the layout editor and select Preview.
19. Compare your work with the following screenshot:

20. Close the editor.
21. Compile the AHA Partner Query Task View.

New task view: AHA create account task view
To create the task view for step 2 of the task described earlier in this chapter, we can
use the New Task View wizard again.

Follow the steps in the previous section to create a new task view named AHA
Create Account Task View but this time add the standard applet named AHA
Customer Profile Form Applet and the playbar applet. Compare your work with
the following screenshot:

Chapter 21

[415]

New task view: AHA create quote task view
In a similar manner as for the AHA Create Account Task View, create a new task
view named AHA Create Quote Task View. Use the AHA Simple Quote Form
Applet above the playbar applet.

New task view: AHA create order task view
In a similar manner as for the AHA Create Account task view, create a new task view
named AHA Create Order Task View. Use the AHA Simple Order Form Applet
above the playbar applet.

Did you know?
If you wish to speed up the process of creating task views, you can use
the Copy Record command to copy an existing task view. Then use the
Object Explorer to navigate to the list of View Web Template Items and
replace the applets using the pick list in the Applet property. When you
do so, ensure that the appropriate Applet Mode is selected and verify
your work using the web layout editor.

A Siebel Tools archive file (Views.sif) is available with this chapter's code files. The
file represents the task views created in the previous sections.

Creating tasks
As we have seen in the previous sections, the decision to provide end users with a
task-based user interface has far-ranging consequences. For example, the UI itself in
terms of form and list applets has to be carefully designed, typically with much more
consideration than is taken in our brief example. In addition, the business logic has
to be designed as task steps which are called between the task views.

The following procedure describes how to create the task flow itself. We will use the
task views created in the previous sections:

1. Click the New button in the toolbar.
2. In the Task tab of the New Object Wizards dialog, double-click the

Task icon.
3. In the New Task page, enter the following values:

Project: AHA Task UI
Name: AHA Sales Process
Display Name: Sales Process
Business Object: Account

°
°
°
°

Siebel Task User Interface

[416]

4. Click Finish.
5. The new task is opened in the editor automatically. A start and end step are

provided as a starting point.
6. Delete the connector between the start and end step.
7. Click the canvas to select the task definition.
8. In the Multi Value Property Window (MVPW) select the Task Properties

tab and create the following property records (setting String as the
Data Type):

AHA Partner Name
AHA Partner CSN
AHA Partner City
AHA Create Quote Flag
AHA Name Search
AHA CSN Search
AHA City Search
AHA Query Operator (set the Default property to AND)

9. In the Chapters tab of the MVPW, create the following records:

Name Display Name - String Override Color (select from color picker)
Query Partner Lookup Red
Partner Create Partner Orange
Quote Create Quote Yellow
Order Create Order Green

Creating the task flow layout
In order to simplify the instructions for creating a task, we do not discuss each
and every single detail such as drag and drop operations with which the reader
should already be familiar with. We can use the same techniques as in the workflow
process editor to arrange the steps on the task editor canvas as shown in the
following screenshot:

°

°

°

°

°

°

°

°

Chapter 21

[417]

Because task view steps are empty after arranging them on the canvas, we must
right-click them and select Bind Task View. We can then select the appropriate task
view for the step. Please use the preceding screenshot as a guide for creating the task
flow and binding the correct task view to each task view shape.

The business service, decision point, and Siebel operation steps can be renamed
using the Name property. Connectors originating from decision steps can be labeled
using the Label property. The Ctrl+B and Ctrl+F keyboard shortcuts allow us to align
the branch labels as shown in the preceding screenshot.

In the following procedures we describe the configuration activities for each task
step and explain the technical details.

Configuring task view steps
After assigning a task view to a task view step shape using the Bind Task View
command, we must specify additional properties for each task view. The most
important properties for the task view step type are described in the following table:

Property Description
Chapter The name of one of the task's chapters. Each task step must

be assigned to a chapter.
Disable Cancel
Disable Pause
Disable Previous

These properties allow controlling the state of the Cancel,
Pause, and Previous buttons of the playbar applets. When set
to TRUE, the respective button is disabled.

Siebel Task User Interface

[418]

Property Description
Display Name The (translatable) text to be displayed in the Task UI when

the task view is active.
Forward Button Type Controls the behavior and label of the forward button.

Possible values are:
Next: The button that proceeds to the next step is
labeled Next.
Submit: The button label is Submit. Data will be
committed to the business components. Typically
used on the last task view.
Finish: Typically used on the last task view when all
data has already been committed.

•

•

•

Retain Task Search Spec

Retain Applet Search Spec

Retain User Search Spec

TRUE and FALSE values control how the business
component should handle the current search specifications
from the task itself, the applet, or the user's query. When set
to TRUE the current query is kept. When set to FALSE, the
record set is retrieved with a new query execution.

The following procedure describes how to configure the first task view step, AHA
Partner Query Task View, in our example task:

1. Select the AHA Partner Query Task View step in the task editor.
2. In the Properties window, enter the following values:

Chapter: Query
Disable Previous: TRUE
Forward Button Type: Next
Display Name - String Override: Enter query criteria

3. In the Multi Value Property Window, select the Output Arguments tab and
create the following records:

Property Name Type Business
Component

Business
Component Field

AHA Partner Name Business Component AHA Partner
Query TBC

Partner Name

AHA Partner CSN Business Component AHA Partner
Query TBC

Partner CSN

AHA Partner City Business Component AHA Partner
Query TBC

Partner City

4. Save your changes.

°

°

°

°D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 21

[419]

The previous configuration ensures that the Previous button in playbar applets
displayed in the task view will be disabled (which makes sense because it is the first
task view). The settings in the MVPW will assign the input from the end user from
the transient business component's fields to task properties so we can use them later.

The remaining task views should be configured as follows using the
Properties window:

AHA Create Account Task View
Chapter: Partner
Forward Button Type: Next
Display Name - String Override: Create Partner Account

AHA Create Quote Task View
Chapter: Quote
Forward Button Type: Next
Display Name - String Override: Create New Quote

AHA Create Order Task View
Chapter: Order
Forward Button Type: Submit
Display Name - String Override: Create New Order

Setting the Forward Button Type property to Submit ensures that all open
transactions are committed and the task proceeds to the end.

Configuring business service steps
Working with business services in tasks is similar to workflow processes. The
following procedure describes how to configure the Set Search Strings business
service step in our example flow and explains the details of the configuration:

1. Select the Set Search Strings step in the editor.
2. In the Properties window, enter the following values:

Business Service: Workflow Utilities
Business Service Method: Echo
Chapter: Query

•

°

°

°

•

°

°

°

•

°

°

°

°

°

°

Siebel Task User Interface

[420]

3. In the Output Arguments tab of the MVPW enter the following records (set
the Type property to Expression for all records):

Property Name Value
AHA Name Search IIf ([&AHA Partner Name] IS NULL,"[Name] LIKE

'*'","[Name] ~LIKE '" + [&AHA Partner Name] +
"'")

AHA CSN Search IIf ([&AHA Partner CSN] IS NULL,""," " + [&AHA
Query Operator] + " [CSN] ~LIKE '" + [&AHA
Partner CSN] + "'")

AHA City Search IIf ([&AHA Partner City] IS NULL,""," " + [&AHA
Query Operator] + " EXISTS([City] ~LIKE '" +
[&AHA Partner City] + "')")

4. Save your changes.

The purpose of the expressions is to prepare a set of valid search specifications for
the Siebel Operation step. The IIf() function is used to determine whether the task
property, referenced using square brackets, [and], and preceded by an ampersand
(&) sign, is empty using the IS NULL operator.

The second argument of the IIf() function is returned when the task property is
empty. In the cases of the AHA CSN Search and the AHA City Search properties, an
empty string ("") will be returned. For the AHA Name Search property, the return
value will be the [Name] LIKE '*'.

In case the task properties have values, the third argument of the IIf() function
will be returned and the return values will be query strings, which are the results of
concatenating the constant and variable values to a search string.

The search strings use the ~LIKE operator, which allows case insensitive search.
Because the City field is a multi value field in the Account business component, we
must use the EXISTS() function to search within the entire set of address records
associated with the account.

Configuring Siebel Operation steps
Siebel Operation steps are widely used in tasks to invoke the business component
methods needed to query or manipulate the record set. The following procedure
describes how to configure the Query Accounts step of our example task. The step
uses the search strings created by the previous invocation of the Workflow Utilities
Echo method:

Chapter 21

[421]

1. Select the Query Accounts step in the editor.
2. In the Properties window enter the following values:

Business Component: Account
Chapter: Query
Operation: Query

3. In the Task Step Context tab of the MVPW, create a new record with the
following values:

Name: Query
Type: Expression
Expression Business Component: Account
Filter Business Component: Account
Search Specification: [&AHA Name Search] + [&AHA CSN Search] +
[&AHA City Search]

4. Save your changes.

The previous expression concatenates the values of the task properties populated by
the previous business service step to a single search specification, which is then used
to query the Account business component.

The following is an example of what a generated search specification could look like:

[Name] ~LIKE 'ABC Corp.' AND EXISTS([City] ~LIKE 'Chicago')

A search spec like the previous would retrieve all account records that have a name
of ABC Corp. (regardless of case, so records could also be named abc Corp.) and that
have at least one address in Chicago.

The remaining Siebel Operation steps in the example task should be configured
as follows:

Create Partner:
Business Component: Account
Chapter: Partner
Defer Write Record: TRUE
Display Name - String Override: Create Partner Account
Operation: Insert

°

°

°

°

°

°

°

°

•

°

°

°

°

°

Siebel Task User Interface

[422]

In the Fields tab of the MVPW, create the following record:
Field Name: Partner Flag
Type: Literal
Value: Y

Create Quote:
Business Component: Quote
Chapter: Quote
Defer Write Record: TRUE
Display Name - String Override: Create Quote
Operation: Insert
In the Fields tab of the MVPW, create the following record:

Field Name: Price List
Type: Literal
Value: Master Price List

If you do not use the Siebel Sample Database, enter the name of a valid
price list instead of Master Price List. This price list will be used as the
default when there is no price list associated with the account. The
Price List field in the Quote business component has been configured
as a required field in a previous chapter.

Create Order:
Business Component: Order Entry - Orders
Chapter: Order
Defer Write Record: TRUE
Display Name - String Override: Create Order
Operation: Insert
In the Fields tab of the MVPW, create the following record:

Field Name: Order Type
Type: Literal
Value: Sales Order

Create Activity:
Business Component: Action
Chapter: Order

°

°

°

°

•

°

°

°

°

°

°

°

°

°

•

°

°

°

°

°

°

°

°

°

•

°

°

Chapter 21

[423]

Defer Write Record: FALSE
Display Name - String Override: Create Activity
Operation: Insert
In the Fields tab of the MVPW, create the following records:

Field Name Type Value
Description Literal New customer documents

have been created via Task UI
Type Literal Administration

Use the Ctrl+S keyboard shortcut or the Save button in the toolbar to save your
changes frequently.

The Defer Write Record property for Siebel Operation steps controls whether the
business component should write each record to the database when the step is
executed or wait until a Commit step or the end of the task is reached. The business
component will wait, deferring the write operation, when the Defer Write Record
property is set to TRUE.

Configuring decision steps and branches
Another similarity to workflow processes lies within the configuration of conditional
branches. We use decision points and define the conditions in the connectors leading
from the point.

The following procedure describes how to configure the branching logic for the
Query Results decision point in our example task flow:

1. Double-click the connector labeled >1, which connects the Query Results
decision point to the AHA Partner Query Task View step.

2. In the Compose Condition Criteria dialog's lower section enter the
following values:

Compare to: Task Property
Object: Siebel Operation Object Id
Operation: All Must Match (Ignore Case)

3. Click the New button to the right of the Values list box.
4. Enter * as the value.
5. Click OK.
6. Click the Add button to add the new condition to the Conditions list in the

upper part of the Compose Condition Criteria dialog.

°

°

°

°

°

°

°

Siebel Task User Interface

[424]

7. Click OK to close the dialog.
8. Save your changes.

In this connector, we check the Siebel Operation Object Id task property
for a value of *, which is assigned automatically when the query result set
contains more than one record. In this case, the task returns to the AHA
Partner Query Task View so that the end user can enter more precise query
criteria.

9. Double-click the connector labeled 0, ending at the Create Partner step, and
add the following condition:

Compare to: Task Property
Object: Siebel Operation Object Id
Operation: Is Null

10. Save your changes.
The 0 connector is followed when the Siebel Operation Object Id task
property is empty, which indicates that the query result contains no records.
In this case, a new record must be created, which is facilitated by the Create
Partner step and the AHA Create Account Task View.

11. Double-click the connector labeled 1 and enter the following two conditions:

Compare to Object Operation Value
Task Property Siebel Operation

Object Id
Is Not Null

Expression All Must Match
(Ignore Case)

[&Siebel Operation
Object Id] <> '*'

12. Save your changes.

The two conditions in the 1 connector must both be satisfied in order for this connector
to be selected. A non-empty (Is Not Null) Siebel Operation Object Id task property
that does not have a value of * (<> '*') is an indicator that only one record has been
retrieved by the query (in that case, the Siebel Operation Object Id contains the
ROW_ID of the record). The 1 connector leads to the Create Quote? decision point.

The remaining decision connectors, leading from the Create Quote? step, should be
configured as follows:

Create the following condition for the Yes connector:
Compare To: Business Component
Object: Account

°

°

°

•

°

°

Chapter 21

[425]

Operation: All Must Match (Ignore Case)
Field: AHA Always Generate Quote Flag
Value: Y

Set the Type property for the No connector to Default.

The Yes connector will only be followed when the AHA Always Generate Quote
Flag has a value of Y for the current account record. Subsequently, the Create Quote
step is reached. Otherwise the No connector is followed and the Create Order step
is reached.

Now that we have reached a point where we can test the task, we should validate it
using the Validate command in the context menu. We must correct any errors that
may be displayed.

A Siebel Tools archive file (AHA Sales Process Task.sif) is available with this
chapter's code files. The file represents the AHA Sales Process task created in the
preceding section.

Creating and using task groups
As indicated earlier in this chapter, a task must be listed in at least one task group.
The task group itself must be associated with a standard view in order to make the
task accessible to end users, including the developer who wants to test the task.

The following procedure describes how to create a new task group and associate it
with the Task Pane View, the view definition that supports the task pane in which
the list of tasks is displayed. By associating the task with the Task Pane View,
the task will be accessible from any location in the Siebel Web Client, which is
convenient for testing purposes:

1. If necessary, expose the Task Group type and the View Task Group subtype
(of the View type) in the Object Explorer.

2. In the Object Explorer, select the Task Group type.
3. In the Object List Editor, create a new record with the following values:

Name: AHA Task Group
Project: AHA Task UI
Display Name - String Override: AHA Business Processes

4. In the Object Explorer, expand the Task Group type and select the Task
Group Item type.

°

°

°

•

°

°

°

Siebel Task User Interface

[426]

5. In the Task Group Items list, create a new record with the following values:
Action Invoked: AHA Sales Process
Type: Task
Sequence: 10

6. Compile the AHA Task Group.
7. Navigate to the Task Pane View.
8. Check out or lock the view.
9. Expand the View type in the Object Explorer and select the View Task

Group type.
10. In the View Task Groups list, create a new record with the following value:

Task Group: AHA Task Group
11. Compile the Task Pane View.

A Siebel Tools archive file (Task Group.sif) is available with this chapter's code
files. The file represents the new task group and the modified Task Pane View
created in the preceding section.

Publishing, activating, and administering
tasks
From our experience with the workflow process editor we are already familiar
with the procedures related to publishing, activating, and administering workflow
processes. The same functionality applies to tasks.

To publish and activate a task we click the Publish/Activate button in the WF/Task
Editor toolbar, which is the same procedure as for workflow processes. This sets the
task's Status property to Completed and copies the task definition to the runtime
tables. The task definition is now read-only. We must click the Revise button to
create a new editable version, another similarity to workflow processes.

The following procedure describes the steps necessary in the Siebel Web Client to
administer an activated task and associate it with a responsibility:

1. Log in to the Siebel Mobile or Developer Web Client using an administrative
user account.

2. Navigate to the Administration - Application screen, Tasks view.
3. In the Registered Tasks list applet, create a new record.

°

°

°

Chapter 21

[427]

4. In the Task Name column, use the pick list to select the AHA Sales Process
task. Only activated tasks appear in this list.

5. In the Responsibilities list at the bottom of the view, click the New button.
6. Select the AHA Prototype responsibility, or any other responsibility that you

have, from the list.
7. Click OK.
8. Click the Clear Cache button on the Registered Tasks list applet.
9. Click the Tasks button in the toolbar to open the Task Pane.
10. Verify that the task is listed in the task pane.

Did you know?
In case the task has not been activated from Siebel Tools, we must use the
Task Deployment view in the Administration - Business Process screen
to locate and activate completed task definitions.

Testing and debugging tasks
The task UI framework, unlike the workflow process framework, does not provide
a simulator. Task developers must therefore use their Mobile or Developer Web
Client to test the task flow.

Under most circumstances it proves very useful to be able to inspect the state of the
task properties and business components at each step of the task. To facilitate this,
we can add the following entry in the [InfraUIFramework] section of the client's
configuration file:

EnableRestrictedMenu = TRUE

This entry enables the Debug Mode item in the Tools menu of the Siebel client. We
can use this menu item to set the application into task debug mode. In this mode, a
pop-up window opens automatically between the task steps and allows us to inspect
the task properties and business component instances.

Siebel Task User Interface

[428]

The following screenshot shows the AHA Sales Process task in debug mode after
clicking the Next button in the first task view:

The Task Properties window displays the current values of all task properties. By
clicking the Continue button in the Task Properties window we can proceed to the
next step in the task.

To test a task it is beneficial to discuss test cases with the business analyst team in
order to ensure that the task is tested under real-life conditions.

When errors or undesired behavior occur, we must cancel the task by clicking the
Cancel button in the playbar applet and log off the Siebel client. In Siebel Tools
we must then use the Revise functionality to create a new task version, correct the
problem, and publish and activate the task again before we can log in to the client to
continue testing.

Using applet messages
Applet messages have been introduced along with the Task UI to accommodate the
increased need for displaying contextual information to the end user.

The Applet Message type is a subtype of the Applet type. It supports the use of
symbolic strings for easy translation. Furthermore, we can add placeholders to the
text, which can be replaced with the content of business component fields at runtime.

Chapter 21

[429]

The following procedure describes how to create an applet message for the AHA
Sales Process task. The purpose of the message is to confirm the billing address
when the end user enters the order header details in the AHA Simple Order
Form Applet:

1. Check out or lock the AHA Symbolic Strings project if necessary.
2. Create a new Symbolic String with the following values:

Name: X_AHA_TASKMSG_ORDER_1
Project: AHA Symbolic Strings

3. Create a new Symbolic String Locale record for the new symbolic string
with the following values:

Language: ENU
String value: A new order will be created for %1 at %2 (this is
the billing address).

The placeholder text %1 and %2 will be replaced with field
values at runtime.

4. Compile the X_AHA_TASKMSG_ORDER_1 symbolic string.
5. Expose the Applet Message subtype in the Object Explorer if necessary.
6. Navigate to the AHA Simple Order Form Applet.
7. Check out or lock the applet if necessary.
8. In the Object Explorer, expand the Applet type and select the Applet

Message type.
9. In the Applet Messages list, create a new record with the following values:

Name: Message 1
Text Message - String Reference: X_AHA_TASKMSG_ORDER_1

10. In the Object Explorer, expand the Applet Message type and select the
Applet Message Variable type.

11. In the Applet Message Variables list, create the following records:

Field Value
Account 1
Calculated Primary Bill To Address 2

°

°

°

°

°

°

Siebel Task User Interface

[430]

This maps the Account field to the %1 placeholder and the
Calculated Primary Bill To Address field to the %2 placeholder.

12. Navigate back to the AHA Simple Order Form Applet.
13. Open the web layout editor for the AHA Simple Order Form Applet.
14. In the Controls/Columns window, select the Edit mode.
15. Select all controls by drawing a rectangular shape across them in the editor

canvas.
16. Use the arrow buttons on the keyboard to move all controls down in order to

create free space on top of the applet.
17. From the Palettes window, drag a Field control to the free space on top of

the form.
18. In the Properties window, enter the following values:

Name: AHA Message 1
Field: Message 1
HTML Display Mode: DontEncodeData
HTML Type: PlainText

19. Resize the new control so that it spans across the applet.
20. Save your changes and close the editor.
21. Compile the AHA Simple Order Form Applet.

We can now log on to the Mobile or Developer Web Client and test the AHA Sales
Process task.

Search for a non-existent account in the first view, then create a new
account with a billing address, and uncheck the Always Quote flag. The
next view should display similarly to the following screenshot.

°

°

°

°

Chapter 21

[431]

As we can see in the screenshot, the account name and billing address information
appears at the placeholder location in the message text.

Did you know?
In the previous example, we specified DontEncodeData for the HTML
Display Mode property. This allows us to apply HTML formatting such
as CSS styles, colors, and line breaks within the message text more easily.

Summary
The Siebel Task UI can be efficiently used to guide end users through complex
business processes. Because of its similarity to Siebel Workflow, developers only
have to master a slight learning curve.

In this chapter, we discussed the repository object types that are used in the
Task UI.

A case study example was provided to discuss all aspects of working with the Task
UI such as creating transient business components, task applets, task views, and
the like.

The chapter also explained how to publish, activate, administer, and debug tasks.

In the final section, we learned how to use translatable applet messages for more
precise end user guidance.

In the next chapter, we will learn how to use Siebel eScript to extend the Siebel
CRM functionality.

Extending Siebel CRM
Functionality with eScript

In the previous chapters of this book, we explored many aspects of configuring Siebel
CRM applications in order to adapt the system to our customer's requirements.
All the different techniques discussed so far have one thing in common: they are
declarative. This means that the developer creates and modifies records in the Siebel
Repository and defines objects by editing their properties via the Siebel Tools user
interface. At no time is it necessary to modify existing code or write code such as
SQL scripts or C++ programs.

In the late nineties, when Siebel CRM was in its early versions and declarative
options were limited, for example Siebel Workflow did not exist until Siebel 2000,
developers often relied upon the possibility of extending the existing functionality
with custom written program code.

Becoming more mature in versions 7 and 8, the preconfigured functionality of Siebel
CRM is often sufficient to implement complex requirements such as in integration
scenarios or additional program logic.

However, under certain circumstances it may still be necessary to write custom
code. Because Siebel CRM is a complex framework, proper understanding of its
functionality and intricacies is a key prerequisite to writing code that fits into this
framework flawlessly.

In this and the following chapter, we will learn how the Siebel scripting environment
allows us to extend Siebel CRM functionality.

Extending Siebel CRM Functionality with eScript

[434]

This chapter is structured as follows:

Introduction to Siebel Scripting
When to use Siebel Scripting
Creating a custom business service
Declaring business service methods and arguments
Testing and debugging scripts

Introduction to Siebel scripting
The Siebel scripting framework, internally named extension language or EL, allows
custom developers to add code to application, applet, business component, and
business service definitions. The following programming languages are supported:

eScript: By far the most popular scripting language for Siebel CRM. Siebel
eScript is an implementation of the ECMA-262 standard, which is also the
base of the popular JavaScript language. Siebel eScript is supported on all
operating systems on which Siebel CRM can be installed.
SiebelVB: A derivative of Visual Basic is supported as a Siebel scripting
language as well, albeit its importance and adoption by developers have
declined over the last decade. VBScript is only supported on Microsoft
Windows operating systems.
Browser JavaScript: Interpreted by the browser, code implemented in pure
JavaScript allows developers to manipulate the objects in the browser's
document object model (DOM). The Siebel scripting framework provides a
set of JavaScript functions to interact with the Siebel objects such as applets
and controls.
Java: So-called Java business services allow developers to execute Java code
within the Siebel framework.
C++ and C#: A custom dynamic link library (DLL) developed for Windows
operating systems or a shared object (.so) developed for UNIX-based
operating systems can be invoked from within the scripting framework.

In this and the following chapter, we will focus solely on eScript and Browser
JavaScript.

•

•

•

•

•

•

•

•

•

•

Chapter 22

[435]

Server and browser scripts
Siebel scripts can be executed by the Siebel Object Manager, which supports the
user session on the Siebel Server, the siebel.exe program (also known as the
Mobile Web Client), or the browser executable. We refer to scripts that are executed
by a Siebel executable as server scripts and to scripts that are executed by the
browser as browser scripts.

It must be noted here that the available functionality for browser scripts is limited
and that the option of executing JavaScript code in the browser should be regarded
only as the last resort.

The following diagram illustrates the architectural differences between server and
browser scripts by comparing the Siebel Object Manager against the browser:

From the previous diagram, we can learn the following:

All scripts, browser and server script alike, are developed in Siebel Tools and
compiled in the SRF file
Server scripts are read from the SRF file and interpreted by the Object
Manager (or siebel.exe on mobile clients) at runtime

•

•

Extending Siebel CRM Functionality with eScript

[436]

Browser scripts must be extracted from the SRF file, using the genbscript.
exe utility discussed later in this chapter, and placed as JavaScript (.js) files
on the web server that hosts the Siebel Web Server Extension (SWSE)
The browser downloads the JavaScript files from the web server and
interprets the browser scripts at runtime

In this chapter, we will only discuss server scripts. All of the following information
applies to server scripts only. Browser scripts will be discussed in the next chapter.

Server scripts are usually deployed for data operations in absence of the user. This
means that developers can write script code that invokes business component
methods in order to work with the record sets behind the scenes.

Server scripts can be added to the following object types in the Siebel Repository:

Application
Applet
Business Component
Business Service

Each object type exposes a discrete set of event handlers where developers can place
their code.

The following table discusses the pros and cons of scripting to be taken into
consideration for each object type:

Object Type Pros Cons
Application Code on the application level

is accessible from all objects
within the application.

Event handlers for view
navigation are exposed by this
object type.

The fact that the code is
accessible only from objects
within the application can
cause problems. Business
service methods can be
invoked from everywhere and
should be considered as an
alternative.

•

•

•

•

•

•

Chapter 22

[437]

Object Type Pros Cons
Applet Developers can implement

highly specialized functionality
for an individual applet.

Button and menu item
activation can be controlled
with great flexibility.

Placing too much code on the
applet (user interface) level
compromises the concept of
implementing business logic
on the business component
layer.

In addition, the possibility of
creating duplicate code is very
high.

Business services or business
component user properties
or applet user properties
should be considered as an
alternative.

Business Component The natural place for business
logic. It is possible to handle all
events regardless of whether
they originate from end users
or external systems.

Scripts on the business
component level are object-
specific and not reusable on
other business components.
This could lead to code
duplication and therefore code
maintenance problems.

Business Service Writing business service code
is considered the best way to
stay close to the Siebel CRM
standard.

Business services have the
highest level of reusability.

When implemented
professionally, custom
business services extend Siebel
CRM functionality without
negatively affecting a potential
upgrade.

Writing business services
requires a high degree of
programming skills.

There is a risk of reinventing the
wheel when developers ignore
the rich library of standard
business services delivered by
Oracle.

Extending Siebel CRM Functionality with eScript

[438]

Application event handlers
The following table describes the most important event handlers for server scripts on
the Application object type. For details on the Siebel event framework, please refer
to Chapter 16, Menus and Buttons:

Event Handler Description
Application_Start Code in this event handler is executed when the Siebel

application starts. The command line that invoked the
application is passed as the CommandLine input argument.

Application_PreNavigate This event handler is executed before ("pre") a new view is
loaded. The name of the destination view and its associated
business objects are passed as input arguments.

Application_Navigate Being a "post" event handler (no "pre" in the name), this one
is executed after a new view has been loaded.

Applet event handlers
The following table describes the most important event handlers for server scripts
on applets:

Event Handler Description
WebApplet_PreCanInvokeMethod This event handler is called every time and for

every method that can be invoked from the applet
(from buttons or applet menu items) at applet load
time and when the end user navigates to a different
record. This event handler can be useful to complex
access control logic to prevent that certain users
clicking buttons or menu items.

Simple access control mechanisms however should
be implemented declaratively using the Named
Method or CanInvokeMethod user properties as a
declarative alternative.

WebApplet_PreInvokeMethod Commonly used to trap custom method invocations
on the applet level. For a more centralized approach,
the PreInvokeMethod event handler on the
business component should be used.

Chapter 22

[439]

Business component event handlers
The following table describes the most important event handlers for business
component server scripts:

Event Handler Description
BusComp_PreInvokeMethod This event handler is invoked every time a specialized

method (a method other than NewRecord or other
standard methods) is invoked. Developers typically
use this event handler to trap custom methods on the
business component level.

BusComp_PreWriteRecord Invoked before the Siebel core code commits data
changes (insert, update, delete) to the database. By
using the CancelOperation return value, developers
can prevent the Siebel core code executing, which
makes this event handler very popular for validation
purposes.

(See later section for more information on the
CancelOperation return value.)

BusComp_PreQuery Invoked before a query is executed on the business
component. Mainly used to validate the query criteria
entered by the user. As with any pre-event handler,
developers can verify the current situation and decide
to cancel the operation or continue to execute the event
flow.

BusComp_SetFieldValue Invoked when a field value has been changed by
an end user, a script, a workflow process or an EAI
interface. The current field name is passed as an input
argument.

BusComp_PreNewRecord
BusComp_NewRecord
BusComp_PreDeleteRecord
BusComp_DeleteRecord

Among other event handlers, these pairs (the pre
and post part) of event handlers can be used to write
code that is executed before and after a certain data
operation (new, delete) takes place.

It can be noted here that the business component object type supports the highest
number of event handlers compared with other object types.

Extending Siebel CRM Functionality with eScript

[440]

Business service event handlers
The following table describes all available event handlers for business service
server scripts:

Event Handler Description
Service_PreInvokeMethod The typical entry point for custom business service

methods. Developers use this event handler to trap
the invoked method and invoke custom functions to
process the input property set and create the output
property set.

Service_PreCanInvokeMethod When the business service is invoked from a
user interface element such as a menu item or
toolbar button, we can use this event handler to
programmatically enable or disable the UI elements
depending on business logic.

Service_InvokeMethod Can be used for post-processing a method
invocation. Typically not used for custom business
services.

The script editor
As indicated previously, all scripts—eScript, SiebelVB, or browser JavaScript – are
written and maintained in Siebel Tools. The script editor for eScript provides syntax
highlighting and inline script assistance. The following screenshot shows the eScript
editor in Siebel Tools:

Chapter 22

[441]

The screenshot shows a portion of the eScript code for the CheckActivity method
of the preconfigured FINS Deal Team Service business service. The original code
has been slightly modified to support the ScriptAssist feature, which is visible in
the screenshot, as well as a pop-up window displaying the available methods for the
object type.

The ScriptAssist feature is part of the ST eScript engine (ST is short for strongly
typed), which has become the default eScript engine in Siebel 8. The ST eScript engine
supports strongly defined data types for variables. Once a variable is strongly typed,
by adding a colon and the data type after the variable declaration, the ScriptAssist
pop-up dialog can display the available methods for this data type. In the preceding
screenshot, the Script Assist popup displays the methods for the BusObject data type.
In addition, a tool tip text displays details about the selected method.

Did you know?
The system preference Enable ST Script Engine must be set to TRUE
to enable the ST eScript engine.
Apart from the ScriptAssist feature, the ST eScript engine also allows
for faster script performance and less memory consumption compared
with older Siebel versions. To realize the performance gain and memory
savings, variables must be strongly typed.
The ST eScript engine is backwards compatible with eScript written for its
predecessor version.

To open the script editor we can right-click any application, applet, business
component, or business service object definition and select Edit Server Scripts from
the context menu. The explorer panel in the script editor allows us to select the
preconfigured event handlers. The (general) section in the explorer pane is used
to create, inspect, and modify custom functions or global variable declarations.

We can configure the behavior and font (name and size) used by the script editor
in the Scripting tab of the development tools options dialog, which we can open by
navigating to the View | Options menu item.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Extending Siebel CRM Functionality with eScript

[442]

The following screenshot shows the Scripting tab with example options:

The settings in the ScriptAssist section are available only when the ST eScript
engine is active and drive the behavior of the ScriptAssist popup as well as other
functionalities of the script editor.

The following table explains the settings in the ScriptAssist section:

Setting Description
Enable Method Listing When checked, the ScriptAssist popup is active. Otherwise, it is

turned off.
Enable Auto Complete When checked, developers can use the Ctrl+SPACE keyboard

shortcut to automatically complete keywords such as method
names. Otherwise, the feature is turned off.

Auto Indent When checked, any new line in the script code starts below
the first character of the previous line. This assists in writing
readable code.

Enable Favorites When checked, the ScriptAssist popup will display recently
used elements on top of the list in italic formatting.

Fix And Go When checked, the Fix And Go feature allows developers to
make changes to the code during the debug cycle without the
need to compile again.

Chapter 22

[443]

Setting Description
Enable Warnings When checked, the compiler will display warnings in addition

to error messages.
Deduce Types When checked, the compiler will try to deduce the data type

of a non-typed variable by using the data type of functions or
objects assigned to the variable.

The script debugger
The Siebel Tools scripting environment includes a debugging toolkit, which provides
functionalities such as setting breakpoints and stepping through the code while
inspecting variable values in the Watch window.

In order for the debugger to work we must correctly set the Debug options in the
Siebel Tools options dialog. Setting these options has already been described in
Chapter 2, Developer Tasks.

The script performance profiler
Available since version 8.1, Siebel Tools includes a script performance profiler,
which allows the developer to identify slow performing code lines during the
development and debugging cycle. We will discuss the script performance
profiler in the next chapter.

The Siebel eScript language
The idea of this book is to teach and demonstrate aspects of application configuration
and customization for Siebel CRM. The book is neither intended to replace Oracle's
Siebel documentation or training offerings nor can this and the next chapter on
scripting serve to teach all aspects of the Siebel eScript language.

Before you start to use Siebel scripting, you should verify whether you fulfill the
following prerequisite requirements:

Working knowledge of at least one major programming language such as
Java or C++
Familiarity with programming concepts such as exception handling and
encapsulation
Good command of Siebel Tools
Exposure to professional training in Siebel CRM development and scripting

•

•

•

•

Extending Siebel CRM Functionality with eScript

[444]

In the following section, we will discuss the most important aspects of the Siebel
eScript language and provide details on where to find more information.

As indicated previously, Siebel eScript is based on ECMA-262, a standard established
by the European association for standardizing information and communication
systems (formerly known as ECMA—European Computer Manufacturer's
Association). ECMA-262 is also the base for JavaScript, which became popular for its
wide adoption in web development. The Siebel ST eScript engine supports ECMA
Script version 4.

The language specification for ECMA-262 can be downloaded from the ECMA
website at http://www.ecma-international.org/publications/standards/
Ecma-262.htm.

Because it has the same base as JavaScript, developers who are familiar with the
latter will find it easy to use Siebel eScript.

Oracle makes the documentation on Siebel eScript available in the Siebel eScript
Language Reference, which is part of the Siebel documentation library (also known
as Siebel Bookshelf). The Siebel eScript Language Reference can be viewed online
or downloaded at http://download.oracle.com/docs/cd/E14004_01/books/
eScript/booktitle.html.

It is important to understand that the majority of eScript code will be written in order
to access and manipulate objects in the Siebel Object Model. This includes applets,
business components, business objects, and other object types, which constitute the
user interface and business logic layer in the Siebel Repository. Standard ECMA
Script has no methods to access these object types.

For this reason, the Siebel scripting framework provides an application
programming interface (API) to access the objects in the Siebel Object Model. This
API is documented in the Siebel Object Interfaces Reference guide, which is part
of the Siebel Bookshelf as well. The guide can be viewed online or downloaded at
http://download.oracle.com/docs/cd/E14004_01/books/OIRef/booktitle.
html.

In the following section, we will discuss some basic concepts of Siebel eScript.

Chapter 22

[445]

Variable declaration and initialization
Variables are declared with the keyword var. A simple but valid variable declaration
looks as follows:

var s;

Every line in eScript must be closed with a
semicolon (;).

The preceding code declares a variable named s.

We can initialize the variable along with the declaration such as in the following
code snippet:

var s = "Test";

The preceding code declares a variable named s and initializes it with the
string Test.

In order to gain full advantage of the ST eScript engine, we should also declare the
data type of the variable. To do so, we enter a colon (:) after the variable name and
press Ctrl+SPACE to open the ScriptAssist popup which helps us in selecting an
appropriate data type.

The following screenshot shows the ScriptAssist pop-up with the example code:

After pressing Ctrl+SPACE we can continue to type the first characters of the
desired data type name. The highlight in the ScriptAssist window will navigate
to the appropriate entry and we can press Enter to continue with the highlighted
text. Alternatively we can type the first characters of the data type name — such as
St—directly after the colon and press Ctrl+SPACE to use the auto complete feature
to complete the text to String.

Extending Siebel CRM Functionality with eScript

[446]

The resulting code snippet should look like this:

var s : String = "Test";

The previous code is a valid declaration of the variable s of the data type String
with an initial value of Test.

Comments
We should make ample use of commentary text in our script code to facilitate the
understanding of the code when others read it. Comments can be enclosed between
/* and */ or preceded with //.

The Siebel script editor highlights comments in green.

The following code snippet demonstrates the use of comments:

/* Variable Declaration */
var s : String = "Test"; //used 'String' because
//of more functionality
//than chars

The text Variable Declaration is treated as a comment similar to the text after the
two forward slashes (//) in the second line.

Blocks and functions
Like many other programming languages, eScript supports conditional blocks
(if, switch), loops (while, for), exception handling (try, catch, finally), and
custom functions.

All code lines within a block or function must be enclosed between curly
brackets—{ and }.

The following code snippets demonstrate the correct implementation of code blocks:

if (s == "Test")
{
 msg = "Test value found.";
}

Chapter 22

[447]

The first line of the preceding code declares an if block. The condition to enter
the if block is that the s variable has a value of Test. The code between the curly
brackets will only be executed when the condition evaluates to true:

for (i = 0; i < 10; i++)
{
 msg = "Value is " + ToString(i);
}

The preceding implementation of a for loop shows that the syntax requires the
specification of a counter initialization (i = 0), a condition (i < 10), and an increment
(i++). When the condition is no longer satisfied (the value of the counter i is 10 or
greater) the loop will end. The code statement within the block will be executed
multiple times as long as the condition is satisfied.

The ST eScript engine requires explicit type conversion as demonstrated in the
previous code snippet using the ToString() function, which converts a numeric
value (held by the i variable) to a string so that the msg variable value is the result of
the concatenation of two strings. String concatenation is accomplished using the plus
(+) sign.

To declare custom functions we must navigate to the (general) node in the
script editor's explorer pane. We expand the (general) node and select the
(declarations) sub-node. In the script editor, we then enter the function
keyword followed by the function name and the input parameter list in
parentheses. The following code snippet serves as an example:

function myTest(x,y)

After this line, we press the Enter key. We can then observe that a new entry for our
function is added to the (general) node.

The following screenshot illustrates this behavior:

As we can see in the previous screenshot, the script editor automatically adds an
empty block for the new function.

Extending Siebel CRM Functionality with eScript

[448]

In addition, we can add data type declarations for the input arguments and the
output argument by modifying the function body as follows:

function myTest(x:float,y:float) : float

In the previous example, the x and y input arguments must be of the float data type
and the return value of the function will be float as well.

The following code example completes the function declaration with a simple
return statement that multiplies x and y:

function myTest(x : float ,y : float) : float
{
 return x*y;
}

The return statement must be used in order to pass back the value of the expression
or variable that follows the return keyword. Any code after a return statement is
not executed.

Exception handling
As Siebel script developers we must be aware of the fact that our script, as short or
long as it may be, will always be part of a much bigger and more complex framework.
Therefore, we must ensure that our script handles exceptions professionally.

The Siebel eScript language provides try and catch blocks, which should be part of
any script however short it may be. When the code within a try block executes with
an error, the script will jump to the catch block where we can place statements to
handle the error condition.

For example we could try to set a field value on a business component in our main
code block. When the set operation fails because of the value not being part of a pick
list, an exception condition is reached. When our main code is part of a try block,
the script interpreter will jump to the catch block where we can use the Exception
object passed to the catch block to extract information about the error and take
action such as notifying the end user or writing to a file.

The following example code illustrates this concept:

try
{
 var f : String = "New Value";
 var oBC : BusComp;
 //skipping code for readability
 oBC.SetFieldValue("Status",f);

Chapter 22

[449]

 //more code here...
}
catch(e)
{
 TheApplication().RaiseErrorText(e.toString());
}

The preceding code spans a try block across the code, which instantiates a string
and a business component. For the sake of readability, some code is omitted. The
SetFieldValue() function of the business component object sets the Status field to
the value of the f variable.

In the case of an error, the catch block is reached. The input parameter e – we can
use an arbitrary name, but e is commonly used – contains the Exception object that
is used in the catch block's only code line to extract the verbose error message using
the toString() function of the Exception object e.

The RaiseErrorText() function of the object returned by the TheApplication()
function can be used to return from the code with an error message, which is
displayed to the end user.

The previous code snippet introduces concepts of Siebel-specific object access
methods — the Siebel API – which we will discuss in the next section.

Cleaning up
In order to avoid problems caused by memory being reserved for script objects, a
situation which is commonly known as memory leak, we must destroy all objects
that were instantiated in the script once they are no longer used. This is typically
accomplished by using a finally block as shown in the following code snippet:

try
{
 var f : String = "New Value";
 var oBC : BusComp;
 //more code here...
}
catch(e)
{
 TheApplication().RaiseErrorText(e.toString());
}
finally
{
 oBC = null;
 f = null;
}

Extending Siebel CRM Functionality with eScript

[450]

The previous code example shows the typical location of the finally block after the
catch block. Setting all objects to null in the reverse order of their initialization as
shown in the previous example code is a recommended practice for ensuring that the
garbage collector, part of the script interpreter, clears the allocated memory.

Siebel object interfaces
As indicated previously, Siebel objects such as application, applet, and business
component expose a predefined set of methods to interact with them. The following
object types support eScript methods and are documented in the Siebel Object
Interfaces reference guide:

Application
Applet
Business Component
Business Object
Business Service
Property Set

In the following section we will describe the most commonly used methods for the
object types mentioned previously.

Application object methods
The following table describes the most important eScript methods for the
Application object type:

Method Description and Example
TheApplication() Returns an object reference to the application object:

var theApp = TheApplication();

ActiveBusObject() Returns an object reference to the currently active business
object:

var oBO : BusObject;
oBO = theApp.ActiveBusObject();

ActiveViewName() Returns the name of the active view:
var currView : String;
currView = theApp.ActiveViewName();

GetBusObject("Name") Returns an object reference to the business object named as the
input parameter:

var oBO : BusObject;
oBO = theApp.GetBusObject("Account");

•

•

•

•

•

•

Chapter 22

[451]

Method Description and Example
GetService("Name") Returns an object reference to the business service named as

the input parameter:
var oSvc : Service;
oSvc = theApp.GetService("EAI File
Transport");

LookupMessage("Catego
ry","Name",arguments)

Returns the translated message text of a message object
definition in the category specified by the first input
parameter. An arbitrary number of additional arguments can
be passed and will be used to replace placeholders in the text.
Placeholders are defined for example as %1:

theApp.LookupMessage("AHA
Messages","Dialog1",this.Name());

NewPropertySet() Returns an object reference to a new empty property set
instance:

var oPS : PropertySet;
oPS = theApp.NewPropertySet();

GetProfileAttr("Name")

SetProfileAttr("Name","
Value")

These two methods support reading and writing profile
attributes that serve as globally available variables throughout
a user session:

theApp.SetProfileAttr("AHA1","Test");
var t : String;
t = theApp.GetProfileAttr("AHA1");

RaiseError("Name","Va
lue")

RaiseErrorText("Text")

The RaiseError() method retrieves a translatable error
message from the User Defined Errors message category and
replaces placeholders in the text with the values passed as
input arguments (see next section for an example).

The RaiseErrorText() method uses a value passed as the
input argument.

Both methods raise an error, as their names suggest, and any
code afterwards is not executed.

Widely used to display (error) messages to end users as a
dialog is displayed automatically.

TraceOn("File","Type","Se
lection")

Trace("Text")

TraceOff()

The trace methods allow developers to control the content and
amount of trace files, which are useful for troubleshooting and
debugging.

Tracing will be discussed in the next chapter.

Extending Siebel CRM Functionality with eScript

[452]

Applet object methods
The following table describes the most important eScript methods for the Applet
object type:

Method Description and Example
BusComp() Returns an object reference to the business

component of the applet:
var oBC : BusComp;
oBC = this.BusComp();

The previous code example uses the this
keyword to reference the current object. The code
will only work in an applet server script.

BusObject() Returns an object reference to the business object
of the applet's business component.

var oBO : BusObject;
oBO = this.BusObject();

InvokeMethod("Method",Arguments) Allows invoking of documented methods. The
first input parameter is the name of the method.
The second is the name of an Array object that
contains the input arguments for the method.

Business component methods
The Business Component object type offers the richest set of methods among all
objects exposed by the Siebel scripting framework. Script developers use the business
component methods to access, modify, and query the data represented by the
business component and its fields. The following table describes the most important
eScript methods for the Business Component object type:

Chapter 22

[453]

Method Description and Example
ActivateField("Field")

ActivateMultipleFields("PropertySet")

Activates the field named in the input
argument or in the input property set (for
multiple fields at once when using the
ActivateMultipleFields() method). Must
be used to prepare the business component for
queries in order to activate fields that are not
active at runtime. Fields are considered active
if they fall into at least one of the following
categories:

Mapped to a visible control or list
column of the active applet
Used in a calculated field mapped by the
active applet
Force Active property is set to TRUE
Link Specification property is set to
TRUE
System fields (always active)

var oBC : BusComp = oBO.
GetBusComp("Account");
oBC.ActivateField("Description");

•

•

•

•

•

ClearToQuery() This method brings the business component in
query mode and prepares it for defining search
and sort specifications:

oBC.ClearToQuery();

SetSearchSpec("Field","Value")

SetSearchExpr("Expression")

Used to prepare a query. SetSearchSpec()
must be used in conjunction with a field name
and a value. SetSearchExpr() takes a Siebel
Query Language search expression as the input
parameter, which makes it useful for more
complex query criteria.

oBC.SetSearchSpec("Name","AHA");
var s = "[Name] LIKE '" + name +
"'";
oBC.SetSearchExpr(s);

SetSortSpec("SortSpec") Sets the sort specification. Also used to prepare a
query:

oBC.SetSortSpec("Name
(ASCENDING)");

Extending Siebel CRM Functionality with eScript

[454]

Method Description and Example
SetViewMode(Mode) Sets the view mode of the business component.

The following are valid values for the input
argument:

SalesRepView (similar to a "My" view)
ManagerView (similar to a "My Team's
view)
OrganizationView (similar to an "All"
view)
AllView (similar to an "across
Organizations" view)

oBC.SetViewMode(AllView);

Note: The input arguments for the
SetViewMode() method are constants and must
be used without quotes.

•

•

•

•

ExecuteQuery(Mode)

ExecuteQuery2(Mode,Flag)

Executes the query with the current set of search
and sort specifications. The two possible Mode
input arguments control how the resulting record
set can be accessed. The ExecuteQuery2()
method also accepts a flag ("TRUE" or "FALSE")
to ignore the current maximum cursor size.
When the flag is set to "TRUE" the query
retrieves all records regardless of the maximum
defined.

The Mode input argument can be set as follows:
ForwardOnly: The record set can only
be parsed forward from the first to the
last record.
ForwardBackward: The record set can
be parsed forward and backward. This
is the default value if the Mode input
argument is not provided and results in
slower performance.

oBC.ExecuteQuery(ForwardOnly);

•

•

Chapter 22

[455]

Method Description and Example
FirstRecord()

NextRecord()

PreviousRecord()

LastRecord()

These navigation methods allow script
developers to set the cursor in the record set of
the business component. All methods return a
Boolean value of TRUE or FALSE indicating
success or failure of the operation.

if (oBC.FirstRecord())
{
 //process data
}

The previous code example uses an if block to
check if there is at least one, the first, record in
the business component's record set. As a result
of the method invocation, the cursor will be set
on the first record of the record set.

GetFieldValue("Field")

SetFieldValue("Field","Value")

GetFormattedFieldValue("Field")

SetFormattedFieldValue("Field","Val
ue")

Used to get or set values from the field specified
in the first input argument. The methods with
Formatted in the name return and accept field
values in the current locale formatting. For
example, a script executed on a German object
manager will return the date value of 1st of May
2011 as 1.5.2011.

oBC.GetFieldValue("Name");
oBC.SetFieldValue("Description","T
est");

Extending Siebel CRM Functionality with eScript

[456]

Method Description and Example
NewRecord(Indicator)

DeleteRecord()

WriteRecord()

These methods are also typically invoked by end
users via applet buttons. In eScript we can use
the NewRecord() method to create new records
or copy the current record depending on the
Indicator input argument, which can have one
of the following values:

NewBefore: Creates a new record as the
new first record of the record set
NewAfter: Creates a new record as the
new last record of the record set
NewBeforeCopy: Copies the current
record and places the copy at the
beginning of the record set
NewAfterCopy: Copies the current
record and places the copy at the end of
the record set

The DeleteRecord() method is used to delete
the current record.
The WriteRecord() method must be invoked
to commit record modifications and save the
current record.

•

•

•

•

GetPickListBusComp("Field")

GetMVGBusComp("Field")

These two methods allow quick and easy
instantiation of the business components
referenced by a pick list field or a multi value
field. Script developers must use these methods
to access and modify these types of fields.

Business object methods
The following table describes the most important eScript method for the Business
Object type:

Method Description and Example
GetBusComp("Name") Returns an object reference to the business component

specified by the input argument.
var theApp = TheApplication();
var oBO : BusObject;
var oBC : BusComp;
oBO = theApp.GetBusObject("Account");
oBC = oBO.GetBusComp("Account");

Chapter 22

[457]

Business service object methods
The following table describes the most important eScript method for the Business
Service object type:

Method Description and Example
InvokeMethod("Method",
InputPS, OutputPS)

This method must be used to invoke a method of the
business service. The first input argument is the name of
the method. The InputPS argument is a Property Set
variable that contains the input argument for the method.
The OutputPS argument is a reference to a second
property set that contains the output arguments of the
method after its execution. An example for invoking a
business service method via eScript will be given in the
next chapter.

Property set object methods
The following table describes the most important eScript methods for property sets:

Method Description and Example
SetProperty("Name","Value") Used to set a property, referenced by the first input

argument, to a value that is passed as the second
argument. If the property does not exist, it is created. If it
exists, the value gets overwritten:

var oPS = theApp.NewPropertySet();
oPS.SetProperty("Arg1","Value 1");

GetProperty("Name") Reads the value of the property referenced by the input
argument:

var s : String;
s = oPS.GetProperty("Arg1");

GetType()

SetType("TypeValue")

GetValue()

SetValue("Value")

These methods can be used to get or set the reserved
Type and Value properties of a property set.

var t : String = "Test";
oPS.SetType(t);

AddChild(PropertySet)

InsertChildAt(PropertySet,
index)

Adds the property set referenced by the first input
argument as a child property set. The InsertChildAt()
method allows specification of an index number to
position the child property set:

var childPS = theApp.NewPropertySet();
oPS.AddChild(childPS);

Extending Siebel CRM Functionality with eScript

[458]

Method Description and Example
GetChild(index) Returns a reference to the child property set at the index

location:
var readPS = theApp.NewPropertySet();
readPS = oPS.GetChild(0);

Copy() Creates a copy of the current property set:
var copyPS = theApp.NewPropertySet();
copyPS = oPS.Copy();

When to use Siebel scripting
Before we continue to learn how to implement scripts, it is necessary to mention that
whenever we write script code in Siebel, there is a high risk that one or more of the
following situations might occur:

Similar functionality already exists in the standard Siebel CRM application
Runtime errors or memory leaks negatively affect the application
The performance of the application degenerates
Maintenance and upgrade tasks become more difficult

To avoid any of the preceding things, we should try to fulfill customer requirements
with administrative or declarative solutions, which the Siebel application framework
provides in abundance, before we resort to scripting.

For example, we can use Siebel Audit Trail to track data changes instead of writing
business component scripts, which do the same thing.

The Siebel Workflow framework, discussed in previous chapters, is used intensively
by Oracle engineering to implement even the most complex requirements. Whenever
additional functionality is needed, Oracle engineers write business services to
implement the new logic. By trying to favor administrative solutions and following
the path drawn by Oracle engineering, we can dramatically reduce the amount of
custom code, which has an overall positive effect on our project.

The following diagram may prove helpful when we have to decide how to resolve
any given requirement:

•

•

•

•

Chapter 22

[459]

The previous diagram shows that we should start with evaluating the standard
Siebel CRM functionality first. If the requirement can be met by using the standard
functionality, we should use it.

When the standard functionality does not meet the requirement this is considered a
gap. We should now investigate whether an administrative solution, represented by
the features implemented in the administrative screens and views of the web client,
can fill this gap.

When no administrative solution can be found, we should try to meet the
requirement by using Siebel Tools declaratively, which is by defining objects and
their properties.

Only when the declarative possibilities of Siebel Tools do not suffice for us to
implement the requirement should we resort to scripting.

Extending Siebel CRM Functionality with eScript

[460]

Creating a custom business service
As discussed in the previous section, scripting is the last resort for developers.
Because of the high risk, we should consider every move very carefully. The decision
of where to place our code influences its manageability. We have learned in previous
sections of this chapter that we can write script code at the Application, Applet,
Business Component, or Business Service object level.

We can reach the highest level of reusability and availability, two important
paradigms in modern programming, when we place our code in a business service
method. This section will teach us how to implement a business service method
with eScript.

Case study example: Retrieve person
information with eScript
AHA employees often need to know more about the users who are associated with
a record. Activities for example can be associated with one or more persons who can
be internal employees or contacts. The AHA team must provide a proof of concept
that information stored about these persons can be retrieved and displayed from
anywhere in the application. As discussed previously, a business service method is
the ideal location for the code that implements this requirement.

Creating a business service definition
The following procedure describes how to create a new business service definition:

1. Create a new project named AHA Business Services and lock it.
2. In the Object Explorer, select the Business Service type.
3. In the Object List Editor, create a new record with the following

property values:
Name: AHA Info Service
Project: AHA Business Services
Display Name - String Override: AHA Info Service
External Use: checked
Comments: Created for AHA prototype

4. Right-click the new business service definition and select Edit Server Scripts
to launch the script editor.

5. When prompted, select eScript as the scripting language.

°

°

°

°

°

Chapter 22

[461]

Creating custom functions
The following procedure describes how to create a new custom function body for a
business service and how to direct method invocations to that function.

1. In the tree pane of the script editor, expand the (general) node and select
the (declarations) node.

2. In the editor, type the following code:
 function getPersonInfo(Inputs, Outputs)

Explanation: The function getPersonInfo() takes two property set
references (Inputs and Outputs) as input arguments.

3. Press the Enter key. Note that a new node for the getPersonInfo() function
is created below the (general) node.

4. In the tree pane of the script editor, select the Service_PreInvokeMethod
event handler.

5. Enter the following code in the function body (replacing the existing return(
ContinueOperation) statement):
switch (MethodName)
{
 case "getPersonInfo": getPersonInfo(Inputs, Outputs);
 break;
 default: break;
}
return (CancelOperation);

Explanation: The MethodName input argument is passed to the switch
block. In case the value of the MethodName argument is getPersonInfo, the
getPersonInfo() function is invoked and the current input and output
property sets are passed to the function. The break statement is used to
leave the switch block. The default switch is reached in any other case. We
must use CancelOperation as the return code of the event handler in order
to avoid errors caused by the invocation of custom functions, which will be
handled entirely by our custom business service.

6. Save the changes.
7. If any syntax errors are reported, rectify the code and save it again.
8. In the editor's tree pane, select the getPersonInfo() function.

The following code has to be entered in the getPersonInfo() function block in
order to implement the requirement. The explanation of the code lines starts after the
code block. Comments have been removed for better readability.

Extending Siebel CRM Functionality with eScript

[462]

The file getPersonInfo.txt in this chapter's code file contains the full code
with comments:

function getPersonInfo(Inputs, Outputs)
{
 try
 {
 var PersonId : String = Inputs.GetProperty("Person Id");
 var FieldList : PropertySet = Inputs.GetChild(0);
 var ContactBO : BusObject =
 TheApplication().GetBusObject("Contact");
 var PersonBC : BusComp = ContactBO.GetBusComp("Person");
 var PersonData : PropertySet = TheApplication().NewPropertySet();
 var f : String;
 with (PersonBC)
 {
 SetViewMode(AllView);
 ActivateMultipleFields(FieldList);
 ClearToQuery();
 SetSearchSpec("Id",PersonId);
 ExecuteQuery(ForwardOnly);
 }
 if (PersonBC.FirstRecord())
 {
 f = FieldList.GetFirstProperty();
 while (f != "")
 {
 PersonData.SetProperty(f,PersonBC.GetFieldValue(f));
 f = FieldList.GetNextProperty();
 }
 PersonData.SetType("PersonData");
 Outputs.AddChild(PersonData);
 }
 else
 {
 throw("No record found in Person BC with [Id]='" + PersonId +
 "'.");
 }
 }
 catch(e)
 {
 TheApplication().RaiseErrorText(e.toString());
 }
 finally
 {

Chapter 22

[463]

 f = null;
 PersonData = null;
 PersonBC = null;
 ContactBO = null;
 FieldList = null;
 PersonId = null;
 }
}

The preceding code demonstrates the following concepts:

Exception handling: The code defines try and catch blocks to safely handle
any exceptions.
Memory management: The finally block sets all object instances to null,
allowing the garbage collector to clean up the memory allocations.
Property set operations: Input arguments for the function are read from
the Inputs property set. A child property set is created and written to the
Outputs property set.
Business component operations: The code instantiates the Person business
component in the Contact business object and executes a query.
Loops and conditions: while blocks and if blocks are used to implement
loops and conditional sections.

Detailed discussion of the example code
In the following section, we will discuss the previous code example line by line:

Variable declarations
The code instantiates the following variables:

PersonId: A String, initialized with the value of the PersonId property of the
Inputs property set.
FieldList: A property set that contains the list of fields to be returned by the
function as properties (property name = field name). The FieldList variable
is initialized with the content of the first child of the Inputs property set.
ContactBO: A business object that is initialized with a reference to the
Contact business object by using the GetBusObject() function of the
application object returned by the TheApplication() function.

•

•

•

•

•

•

•

•

Extending Siebel CRM Functionality with eScript

[464]

PersonBC: A business component reference that is initialized with the
Person business component of the Contact business object represented
by the ContactBO variable.
PersonData: A property set variable to hold the output data.
f: A String variable to hold different values during code execution.

Executing a query
The with(PersonBC) block uses the following functions to prepare and execute a
query on the Person business component in order to retrieve the information for the
person with the Id value held in the PersonId variable:

SetViewMode(AllView): This function sets the business component to the
All view mode, which allows data visibility across organizations.
ActivateMultipleFields(FieldList): Because the field list is passed as
a property set, we can use the ActivateMultipleFields() function, which
will activate all fields in the Person business component that are specified as
properties in the FieldList property set. It is necessary to activate all non-
system fields before querying in order to include the respective columns in
the SQL query.
ClearToQuery(): This function clears all current search specifications on the
business component.
SetSearchSpec("Id",PersonId): The search specification for the business
component is set to match the Id field with the value of the PersonId
variable.
ExecuteQuery(ForwardOnly): This executes the query and returns a record
set that can only be navigated from the first to the last record. Because we
query on the Id field, we expect only a single record to be returned.

Verifying the query result
It is a recommended practice to use the return value (TRUE or FALSE) of the
FirstRecord() function to verify that at least one record is returned by the query.
As shown in the previous example code, an if block can be used to evaluate the
return value.

Reading values from business component fields
Because the names of fields are stored in the FieldList property set, we can
implement a loop to read the values for these fields from the Person business
component represented by the PersonBC variable.

•

•

•

•

•

•

•

•

Chapter 22

[465]

The first line in the if block (f = FieldList.GetFirstProperty();) populates the f
variable with the name of the first property in the FieldList property set.

The code in the while (f != "") block will execute as long as the f variable is not
empty, which is the case after the last property of the FieldList property set has
been reached.

The line PersonData.SetProperty(f,PersonBC.GetFieldValue(f)); creates a
new property in the PersonData property set. The property will be named after the
current value of the f variable (the current field name) and the value of the property
will be the value of that field in the current record of the Person business component.
For example, if f has a value of First Name and the first name of the person
identified by the query is John, then a new property named First Name with a value
of John will exist in the PersonData property set after execution of the line.

The f = FieldList.GetNextProperty(); line sets the value of f to the name of the
next property in the FieldList property set. When there is no further property, f
will be set to an empty string.

Once the while block is completed, the SetType() function is used to set the Type
property of the PersonData property set. The Outputs.AddChild(PersonData);
statement writes the PersonData property set in the first child position of the
Outputs property set.

Handling exceptions
The else block in the example code will be reached when no record has been
returned by the query. In that case, we should notify the end user or external system
with a message indicating that no record has been found. This is accomplished by
using the throw function, which throws an exception, which is then caught by the
catch block. The input argument for the throw function will be passed to the catch
block's exception object from which it can then be retrieved.

The text passed to the throw function is "No record found in Contact BC with
[Id]='" + PersonId + "'.", which results in a concatenation of the static text
portions enclosed in double quotes and the value of the PersonId variable.

The catch(e) block is reached whenever an exception occurs in the try block,
including any throw statement.

The RaiseErrorText application function can be used to invoke the display (or
logging) of an error message. The input argument named e (the name is irrelevant)
represents the Exception object. We can use the toString() function to get the full
message text and pass it as an input argument to the RaiseErrorText function.

Extending Siebel CRM Functionality with eScript

[466]

Cleaning up
The finally block in the example code demonstrates the importance of "destroying"
the objects and freeing the allocated memory. It is a recommended practice to set all
object variables to null using a statement similar to the following:

oBC = null;

Code in the finally block is executed after the try or catch block (if executed).
Setting object variables to null marks the allocated memory as free and the eScript
engine's garbage collector will clear the memory that was used for the variables as
soon as possible.

By obeying this practice, we ensure that our code, irrespective of how often it
executes or how much memory is allocated, does not produce any memory leaks.

Declaring business service methods and
arguments
If we plan to make our business service available to other developers, we should
declare the methods it implements and their input and output arguments. This is
not a technical necessity but it facilitates the work of developers because they can
select method and argument names from pick lists in the workflow process or
script editors.

The following procedure describes how to declare the getPersonInfo method and
its arguments:

1. Navigate to the AHA Info Service business service.
2. In the Object Explorer, expand the Business Service type and select the

Business Service Method type.
3. In the Business Service Methods list, create a new record with the following

properties:
Name: getPersonInfo
Display Name - String Override: Get Person Info
Comments: Retrieves a person by Id and returns field values

4. In the Object Explorer, expand the Business Service Method type and select
the Business Service Method Arg type.

°

°

°

Chapter 22

[467]

5. In the Business Service Method Args list, create the following records:

Name Type Data Type Storage
Type

Optional Display
Name
- String
Override

Comments

Person Id Input String Property Person Id ROW_ID of a
person record.

FieldList Input Hierarchy Hierarchy Field List Child property
set. Must contain
field names
of Person BC
as separate
properties.

PersonData Output Hierarchy Hierarchy (checked) Person
Data

Child property
set. Contains
requested fields
and their values.

6. Compile the AHA Info Service business service.

Testing and debugging scripts
The typical task flow for testing and debugging scripts can be described with the
following list:

1. Compile the object definition.
2. Set breakpoints.
3. Run the Siebel application in debug mode.
4. Invoke the script code from the application.
5. Use the Watch window to verify script operations.
6. In the case of errors, correct the code and save the script.
7. Continue from step 4 and repeat until script executes without errors.
8. Compile the object definition.

Compiling the object definition
Once we have finished the code implementation in the script editor, we must save
our work and compile the parent object definition. In the case of our code example,
we must compile the new business service named AHA Info Service.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Extending Siebel CRM Functionality with eScript

[468]

Setting breakpoints
Assuming that we have already defined the Debug settings in the Siebel Tools
options dialog (as described in Chapter 2), we can now set breakpoints in our code
in order to prepare it for debugging. To accomplish this we set the cursor in the
script code and press the F9 key. Alternatively, we can use the Toggle Breakpoint
command from the Debug menu or the hand icon in the Debug toolbar. A red bar
indicates a line with a breakpoint.

The following screenshot shows a breakpoint set on the first variable initialization of
the example code:

Running the Siebel application in debug mode
To run the Siebel application in debug mode, we press the F5 key. Alternatively, we
can use the Start F5 command in the Debug menu or click the arrow button in the
Debug toolbar.

The Siebel Developer Web Client is then invoked with the settings defined in the
Debug options, which include the /h command line switch. This switch establishes
a connection between the siebel.exe program, representing the Siebel application,
and Siebel Tools. This is necessary for stepping through the code line by line.

Invoking the script code from the application
Once the Siebel application has started, we must trigger the event handler, which
contains our code. In the case of a business component script in the PreWriteRecord
event handler this could, for example, include saving a record represented by the
respective business component. This will then trigger the PreWriteRecord event
handler. If breakpoints are defined in the script code, Siebel Tools will jump to the
first breakpoint in the code and code execution will stop.

Chapter 22

[469]

In our case study example, we wrote a business service script. To test and debug
business service methods, we can use the Simulator view in the Administration
- Business Service screen. The following procedure describes how to invoke the
getPersonInfo method of the AHA Info Service in the business service simulator:

1. Navigate to the Site Map.
2. Click the Administration - Business Service screen link.
3. Click the Simulator view link.
4. In the Simulator list applet on top of the view, create a new record with the

following properties:
Service Name: AHA Info Service
Method Name: getPersonInfo

5. In the following Input Arguments list applet after the Simulator list applet,
create a new record with the following values:

Test Case #: 1
6. Click the icon in the Property Name column to open the Property Set

Properties MVG applet.
7. In the MVG applet, create a new record with the following values:

Property Name: Person Id
Value: 1-2CLU

1-2CLU is the ROW_ID value of a contact record in the Siebel
Sample Database. If you do not use the Siebel Sample Database,
you must obtain a valid ROW_ID value for a contact record and
use it instead of the sample value provided previously.

8. Click OK to close the Property Set Properties MVG applet.
9. Click the icon in the Child Type column to open the Property Set MVG

applet. This applet allows us to create child property sets.
10. Click the New button in the MVG applet.
11. In the Type field, enter FieldList.
12. Click the icon in the Property Key field to open the Property Set Properties

MVG applet.

°

°

°

°

°

Extending Siebel CRM Functionality with eScript

[470]

13. Create three new properties with the following names:
First Name
Last Name
Employee Flag

The following screenshot shows the Business Service Simulator view at
this step:

14. Click OK.
15. Click Save.
16. Click OK to close the Property Set Properties MVG applet.
17. Optionally, click the Save To File… button in the Input Arguments list

applet and save the downloaded XML file to your disk. We can use the Load
From File… button to upload saved input argument files instead of typing all
values again in order to increase the efficiency of our testing routines.

18. Click the Run on One Input button in the upper list applet.
19. Observe that the Siebel Tools task bar icon is flashing.
20. Switch to Siebel Tools.
21. The script editor highlights the first breakpoint with a dark blue bar

indicating that this is the next line to be executed.
22. Press Shift+F9 to display the Watch window.
23. Expand the Local Variables section in the Watch window if necessary.

°

°

°

Chapter 22

[471]

24. Use the buttons on the Debug toolbar or keyboard shortcuts to step through
the code and inspect the values of the variables in the Watch window:

Continue (F5): Finishes code execution without reaching any other
breakpoint
Step Into (F8): Steps to the next line and steps into function calls
Step Over (Shift+F8): Steps to the next line but does not step into
function calls
Step to Cursor (Ctrl+F8): Steps to the next breakpoint or to the
cursor position

The following screenshot shows the script editor and the Watch window
during the debug cycle:

25. After completion of the code, switch back to the Siebel application and
verify the data in the Output Arguments list applet of the Business Service
Simulator. A child property set with a Type of PersonData should exist,
which contains three properties representing the first name, last name, and
the employee flag of the test record.

Correcting code errors during debugging
In the case of runtime errors, we can correct the script code, save the changes, and
continue debugging without the need to recompile the object definition holding the
script. This is only applicable when the Fix And Go feature (described in an earlier
section) has been enabled.

Once the unit test is finished, the object definition must be compiled again.

°

°

°

°

Extending Siebel CRM Functionality with eScript

[472]

Summary
The Siebel eScript language allows developers to extend the Siebel CRM application
logic with custom scripts. Siebel Tools provides a scripting environment for the
Application, Applet, Business Component, and Business Service object types.

In this chapter, we learned how to initialize the scripting environment in Siebel Tools
and what event handlers and methods are available for scripting.

A short case study scenario demonstrated how to create a custom business service
and how to debug it.

In the next chapter, we will discuss advanced aspects of Siebel scripting such as
browser scripting, tracing, and performance considerations.

Advanced Scripting
Techniques

As outlined in the previous chapter, there are many aspects of Siebel scripting.
Server script, for example, is limited to execution on the machine where the Siebel
executable resides, so we cannot use it to interact with the browser or the end user.
By adding script code to the Siebel Repository we also inherit a high responsibility
for the quality and performance of our code, so we should consider preparing our
code for tracing and performance.

In this chapter we will discuss browser scripting, tracing, and performance
measurement techniques that allow developers to implement complex requirements.

This chapter is structured as follows:

Browser scripting
Using translatable messages
Tracing
Performance profiling

Browser scripting
The Siebel CRM web architecture supports the use of browser JavaScript. The
following object types in the Siebel Repository support browser script:

Application
Applet
Business Component
Business Service (including property sets)
Control

•
•
•
•

•
•
•
•
•

Advanced Scripting Techniques

[474]

The set of available event handlers and methods for these object types is very limited
compared with server scripts. In addition, it is important to understand browser
scripting as the last resort, which we should use only when the given requirementwhich we should use only when the given requirement
cannot be implemented declaratively or with server script.

The following requirements represent reasons to use browser scripting:

Manipulation of applet controls: The visual appearance of applet controls
such as text fields and buttons can be manipulated only via specialized
browser script methods provided by the Object Interface API of Siebel CRM.
User dialogs: Complex dialogs and bidirectional communication with the
end user often require the use of browser script. For example, we can use
JavaScript to open a text entry dialog with an OK and Cancel button.
Avoiding server roundtrips: For performance reasons, it might be
necessary to run field validation logic on the browser side without
invoking server-side methods.
Interaction with desktop applications: Because the Siebel High-Interactivity
client runs in Microsoft Internet Explorer, we can use ActiveX methods
to communicate with Windows applications such as Microsoft Excel or
Microsoft Word.

Preparing Siebel Tools for browser scripting
Browser scripts are written in Siebel Tools. During compilation of the Siebel
Repository File (SRF), Siebel Tools extracts the browser scripts as JavaScript (.js) files
to the folder specified in the Scripting tab of the Siebel Tools options dialog. For
testing and debugging purposes, it is necessary to extract the browser scripts to the
language-specific subfolder of the Siebel client's PUBLIC folder.

To change this setting, we navigate to the Options… command in the View menu. In
the Scripting tab of the Development Tools Options dialog, we enter the full path
to the PUBLIC\enu folder (or any other language-specific subfolder) of the Siebel
Developer Web Client installation directory and confirm the setting by clicking the
OK button.

The following screenshot shows an example setting:

•

•

•

•

Chapter 23

[475]

Writing browser script
The process of writing browser script is similar to writing server scripts. We can
invoke the browser script editor, by right-clicking the object definition that supports
browser scripting and selecting Edit Browser Scripts.

The browser script editor offers only basic syntax highlighting. Features such as
ScriptAssist are available only for Siebel eScript and not for browser script. It is
therefore necessary to work very diligently to avoid typing errors and to pay
special attention to case.

Browser script example
The following example script demonstrates some of the scenarios mentioned
previously. The browser script is implemented in the PreSetFieldValue event
handler of the Opportunity business component. The purpose of the script is to
notify the end user that the close date of the opportunity has been set to a date in
the past without performing a network roundtrip. If the close date is in the past, the
control's background color will change to red and the end user can choose whether
to continue or undo the change by clicking buttons in a dialog:

The following procedure describes how to add browser script to an object definition.

1. Navigate to the Opportunity business component.
2. Check out or lock the business component if necessary.
3. Right-click the business component and select Edit Browser Scripts.
4. Open the script editor for the BusComp_PreSetFieldValue event handler.
5. Enter the script code in the function body (see code sample that follows

this list).
6. Save your changes.
7. Compile the Opportunity business component.
8. Test the browser script using the Siebel Mobile or Developer Web Client by

creating a test opportunity record. Set the close date to a date in the past and
save the record. The control's background color should change to red and a
confirmation dialog should appear.

Advanced Scripting Techniques

[476]

The following code implements the logic described earlier. Comments and the
finally block have been removed for the sake of readability. The Opportunity_
BrowserScript.txt file in this chapter's code files contains the full script code
including comments and the finally block.

function BusComp_PreSetFieldValue (fieldName, value)
{
 if (fieldName == "Primary Revenue Close Date")
 {
 try
 {
 var dInputDate = new Date(value);
 var dCurrentDate = new Date();
 var response;
 var oApplet = theApplication().ActiveApplet();
 var returncode = "ContinueOperation";
 var message = "";
 var oControl;

if (eval(dInputDate - dCurrentDate) < 0)
 {
 if (oApplet.Name() == "Opportunity Form Applet - Child")
 {
 oControl = oApplet.FindControl("CloseDate2");
 oControl.SetProperty("BgColor", "#E8624C");
 }
 message = "You have entered a date in the past.\n" +
 "Click OK to continue or click Cancel to abort."
 response = confirm(message);
 }
 switch (response)
 {
 case true: returncode = "ContinueOperation";
 break;
 case false: returncode = "CancelOperation";
 break;
 default: returncode = "CancelOperation";
 break;
 }
 }
 catch (e)
 {
 returncode = "CancelOperation";
 theApplication().SWEAlert("Error: " + e.toString());
 }
 return (returncode);
 }
 return ("ContinueOperation");
}

Chapter 23

[477]

In the following sections we will explain the code line by line.

Monitoring changes on a specific field
The if (fieldName == "Primary Revenue Close Date") statement verifies the
name of the field. The PreSetFieldValue event handler is invoked every time a field
value has been changed. Because we want to monitor changes only on the Primary
Revenue Close Date field, we use the if block to ensure that our code executes only
when this field's value has been modified.

Exception handling
Similar to eScript, browser JavaScript—also based on the ECMA script—uses the
same syntax for exception handling. It is a recommended practice to include a try
and a catch block in browser script code to avoid problems when an exceptional
situation occurs during code execution.

Variable declaration
The following variables are declared in the example code we have seen in an
earlier section:

dInputDate: This variable holds the value entered into the Primary
Revenue Close Date field . The variable is a Date object created using the new
Date(value); statement. The value input argument is passed automatically
to the PreSetFieldValue event handler.
dCurrentDate: This variable is a Date object representing the current date.
This is achieved by initializing it with the new Date(); statement.
response: This variable will hold the response from the end user. It will be
populated when the end user clicks one of the buttons in the confirm dialog.
oApplet: An object reference to the currently active applet. The function
theApplication().ActiveApplet(); returns this object reference. These
functions are part of the Siebel browser scripting API for high-interactivity
web clients.
returncode: This variable is used to hold the string that will be returned by
the PreSetFieldValue event handler. As with any "pre"-event handler, we
can decide to return ContinueOperation or CancelOperation to continue
with normal code execution or to abort the operation respectively. It is
noteworthy which browser script uses strings for the return value as opposed
to server script which uses constants.
message: This variable will hold the message to be displayed to the end user.

•

•

•

•

•

•

Advanced Scripting Techniques

[478]

oControl: This variable will represent the applet control and allow
manipulation of properties of the control, such as its background color,
at runtime.

Did you know?
Some important differences exist between eScript and browser script
regarding the syntax. For example the theApplication() function
in browser script must be written with an initial lowercase t while in
eScript it is written with an initial uppercase T.
Another difference is that the return value of pre-event handlers—
ContinueOperation or CancelOperation—must be enclosed in
double quotes (") and therefore handled as a text string in browser
script. In eScript, the return value is a constant and not enclosed in
double quotes.

Performing date calculations
The main purpose of the example script is to determine whether the date entered by
the end user is in the past. The eval(dInputDate - dCurrentDate) < 0 statement
accomplishes this by subtracting the current date value from the field value. When
the result is less than zero, the current date has a higher value than the date entered,
which means that the input date is in the past. The eval() function can be used in
JavaScript to carry out calculations on arbitrary object types such as date.

Changing control properties
In case the input date is in the past, the script should change the background color
of the Close Date control to red. The Siebel browser script API provides specialized
methods for Control objects that allow manipulation of applet controls. We must
use these methods instead of resorting to JavaScript methods that locate the control
in the browser's Document Object Model (DOM). The control's identifier, which is
used in such methods, can easily change over time, rendering our script defunct.

The script uses the Name() function of the applet object to determine whether the
Opportunity Form Applet - Child applet is currently active. The line oControl
= oApplet.FindControl("CloseDate2"); retrieves an object reference to the
applet control named CloseDate2 (which is the value of the Name property of the
control labeled Close Date).

•

Chapter 23

[479]

By invoking the SetProperty("BgColor", "#E8624C") function on the control
object, we set the background color (BgColor) to a discreet shade of red. The
SetProperty() function's first input argument is the short name of a control
property. In the case of the BgColor property, the second argument is the HTML
code representation of the color (#E8624C), which uses hexadecimal notation for the
red, green, and blue color channels.

Displaying a confirmation dialog to the end user
The native JavaScript method named confirm() can be used to display a message
to the end user. The dialog box will also provide an OK and a Cancel button. The
return value of the confirm() method depends on which button the end user has
clicked. When the user clicks the OK button, the return value is true. When the end
user clicks the Cancel button, the return value is false.

The following screenshot shows the confirm dialog displayed to the end user during
the execution of the browser script:

Interpreting the end user response
By using the switch(response) block we can evaluate which button the end
user has clicked and set the returncode variable accordingly. The value of the
returncode variable will be "CancelOperation" when the end user has clicked the
Cancel button and it will be "ContinueOperation" when the end user has clicked
the OK button.

Displaying error messages
In case of errors encountered during execution of the code in the try block, the
browser's script interpreter jumps to the catch block. In Siebel browser script, we
can use the theApplication().SWEAlert(); function—part of the Siebel browser
script API—to display a modal alert dialog on top of the application. The end user
must acknowledge the message before she or he can continue.

Advanced Scripting Techniques

[480]

Continuing or canceling the flow of operation
Depending on the value returned by a "pre"-event handler function, the application
either continues or cancels the normal flow of operation. The return() function must
be reached at the right time because any lines of code after it will never be executed.
In Siebel browser script, the return() function takes a string parameter that can have
either a value of "ContinueOperation", indicating to continue with the normal flow
of operation, or "CancelOperation", causing the application framework to bypass
the built-in event handler and subsequently abort the operation.

Testing and debugging browser scripts
During compilation of an object definition, such as a business component or applet,
which has browser scripts attached, Siebel Tools automatically extracts the script into
a set of subfolders of the browser compilation folder specified in the Scripting tab of
the Siebel Tools options dialog.

As mentioned earlier in this chapter, it is worthwhile to specify the PUBLIC/enu
(or another language subfolder depending on our implementation) directory of the
client installation folder.

It is a recommended practice to check if Siebel Tools has generated the files after
compilation. When inspecting the target directory, we find a subdirectory with a
name similar to srf1290179221_444. This folder contains another hierarchy of two
folders named bscripts\all.

Did you know?
The name of the browser script root folder is the result of
concatenating "srf", the UNIX timestamp (the number of
seconds elapsed since January 01, 1970) representing the SRF
file's compilation time, and a random number preceded by an
underscore character (_444 in the above example).

In the all folder, we find the browser script files with an extension of .js. The file
names are generated automatically and must not be altered.

To test browser scripts, we must launch the Siebel Mobile or Developer Web Client
as usual and take the necessary actions to invoke the script. As opposed to server
script, Siebel Tools does not support debugging of browser scripts.

If we wish to debug Siebel browser scripts, we must either use the browser's script
debugging capabilities or install a third-party tool such as Microsoft Script Debugger
for Internet Explorer.

Chapter 23

[481]

Extracting browser scripts using the genbscript
utility
There are circumstances when we have only an SRF file without access to the Siebel
Repository data and need to extract the browser scripts. This could be very likely to
occur during the deployment of configuration changes between server environments.
To accomplish the task of extracting browser scripts from an SRF file, Oracle
provides the genbscript (generate browser script) utility, which can be located in the
BIN directory of any Siebel Client or Siebel Server installation folder.

The genbscript utility is used at the Windows command line similarly to the
following example:

genbscript D:\SIA81\CLIENT\BIN\ENU\siebel.cfg D:\SIA81\CLIENT\public\enu
ENU

The first parameter is the full path to a valid Siebel Client configuration file (.cfg)..
The second parameter is the path to the target directory where the browser script
root folder and browser scripts should be generated. The third parameter is the three
letter language code.

If the target directory already contains a browser script root folder with the same
timestamp as the SRF file, the user is prompted to delete that directory and execute
genbscript again.

When no current browser script root directory exists, the utility generates it and
places the complete set of browser scripts, for all objects in the SRF file that have
browser script attached, into the bscripts\all folder.

The following screenshot shows the output of the genbscript utility in the Windows
command shell. Depending on the version of Siebel CRM, warning messages can
appear referring to standard applets. We can ignore these messages.

Advanced Scripting Techniques

[482]

After running the genbscript utility we can continue to use the Siebel CRM
application. Because the browser script root folder is renamed for every version
of the SRF file, the browser automatically gets the latest version of .js files. This
eliminates the need to refresh the browser's cache.

Using translatable messages
In the script examples in this and the previous chapter we used several techniques
of displaying messages to the end user. In all of the examples, the text that should
be displayed to the end user is stored as a static string within the script code for the
sake of readability.

Using static strings is not a recommended practice, so it is time to discuss the
options for storing message texts in a central location outside of the script code. This
technique also enables us to use the same code for all user interface languages in
multilingual environments.

As we have learned in previous chapters, the Symbolic String definitions serve
this purpose. We can create new Symbolic String object definitions to store the
language-specific versions of our message texts.

The LookupMessage() and RaiseError() server script methods of the application
object allow developers to retrieve translated text and fill placeholders in the text
(defined using the percent sign (%) followed by a number). While the RaiseError()
method retrieves only messages that belong to the preconfigured User Defined
Errors message category, the LookupMessage() method accepts the name of any
message category.

The following procedure describes how to create a new message category.

1. If necessary, expose the Message Category object type in the
Object Explorer.

2. Create a new project named AHA Messages and lock it.
3. In the Object Explorer, select the Message Category type.
4. Create a new record and enter AHA Messages in the Name property.

In Chapter 4, Symbolic Strings, we have already discussed how to create Symbolic
Strings and use them for messages. For this reason, the following instructions are
less explicit.

Chapter 23

[483]

To be able to replace the static text in our script code with a translatable message, we
must create a new Symbolic String definition. The Symbolic String should have the
following characteristics:

Name: X_AHA_NO_RECORD
Project: AHA Symbolic Strings

The Symbolic String Locale record for the ENU language code could be created
as follows:

String Value: No record found in %1 BC with [Id]='%2'.

Note: %1 and %2 will be replaced with the name of a business component and a
ROW_ID value respectively at runtime.

We can now add a new Message to the AHA Messages category with the
following properties:

Name: AHA_NO_RECORD_ID
Text - String Reference: X_AHA_NO_RECORD

To finalize this configuration, we must compile the X_AHA_NO_RECORD symbolic
string and the AHA Messages category.

The following procedure describes how to use the new message in the
getPersonInfo() method of the AHA Info Service business service, which we
created in the previous chapter:

1. Navigate to the AHA Info Service business service.
2. Check out or lock the business service if necessary.
3. Open the server script editor and select the getPersonInfo function in the

(general) node.
4. Add a new String variable declaration at the end of the variable declaration

section as follows:
var message : String;

5. In the else block, type two forward slashes (//) before the throw statement
to comment out the entire line.

6. Type the following code below the commented line:

message = TheApplication().LookupMessage("AHA Messages","AHA_NO_
RECORD_ID",PersonBC.Name(),PersonId);

throw(message);

•

•

•

•

•

Advanced Scripting Techniques

[484]

The first line populates the message variable with the return value of the
LookupMessage() application method. The message text will be retrieved
from the AHA_NO_RECORD_ID message in the AHA Messages category in the
current language of the Object Manager. The name of the business compo-
nent referenced by the PersonBC variable and the value of the PersonId
variable will be passed as the first and second arguments. These values will
fill the %1 and %2 placeholders in the message text.
The throw(message); statement will cause the script engine to navigate to
the catch block and populate the Exception object (e) with the value of the
message variable.

7. Compile the AHA Info Service business service.
8. Test the AHA Info Service's getPersonInfo method in the Business Service

Simulator view as described in the previous chapter. Provide an invalid
ROW_ID such as AHA000 as the value of the Person Id input property to
invoke the else block. Verify that the message is displayed correctly.

The following screenshot shows the error message that is displayed after execution
of the getPersonInfo method with an invalid Person Id value.

Note that the Siebel error code (SBL-EXL-00151) is automatically appended. This
specific error code indicates that the RaiseErrorText() function has been called
within a server script (EXL is short for EXtension Language).

The LookupMessage() and RaiseError() methods are available only for server
scripts. To use them from browser scripts, we must implement a custom eScript
business service with a helper function that invokes these methods and passes the
output back to the browser script.

Invoking business service methods from
server and browser script
Business services, especially the preconfigured definitions shipped with the
standard Siebel Repository, constitute a rich library of functionality ready for use
by the developer community. As outlined in Chapter 16, Menus and Buttons, every
developer should acquaint herself/himself with the standard business services
and their methods.

Chapter 23

[485]

The following code snippet demonstrates how to invoke the RunProcess
method of the Workflow Process Manager business service in Siebel eScript. The
technique shown in the code example can be applied to any business service be it
preconfigured by Oracle or custom developed.

 var inputPS : PropertySet = TheApplication().NewPropertySet();
 var outputPS : PropertySet = TheApplication().NewPropertySet();
 var oService : Service = TheApplication().GetService("Workflow
Process Manager");
 var oBC : BusComp; //initialization not shown
 inputPS.SetProperty("ProcessName","AHA Test Workflow");
 inputPS.SetProperty("RowId",oBC.GetFieldValue("Id"));
 oService.InvokeMethod("RunProcess",inputPS,outputPS);

In the code example we have just seen, two property sets—inputPS and outputPS—
are instantiated using the NewPropertySet() method of the application object
returned by the theApplication() function. inputPS will be used to pass
arguments to the business service method and outputPS will hold arguments
returned by the business service method.

The GetService() application method must be used to instantiate a Service typed
variable representing the business service.

Typically, the SetProperty() method will be used several times on the inputPS
variable to produce the necessary input property set. In the example, the
ProcessName and RowId input properties are populated.

Finally, we invoke the desired method with the InvokeMethod() method of the
business service variable. In Siebel eScript, the InvokeMethod() method takes three
input arguments—the name of the method and two references to the input and the
output property set.

Invoking business services from browser scripts is accomplished in a similar
manner. The following code snippet shows a Siebel browser script that invokes the
RunProcess method of the Workflow Process Manager business service.

 var inputPS = theApplication().NewPropertySet();
 var outputPS = theApplication().NewPropertySet();
 var oService = theApplication().GetService("Workflow Process
Manager");
 var oBC; //initialization not shown
 inputPS.SetProperty("ProcessName","AHA Test Workflow");
 inputPS.SetProperty("RowId", oBC.GetFieldValue("Id"));
 outputPS = oService.InvokeMethod("RunProcess",inputPS);

Advanced Scripting Techniques

[486]

We can note the following differences between server and browser script:

The theApplication() method in browser script starts with a lowercase "t"
whereas the same method in server script starts with an uppercase "T".
Browser script does not support strong typed variables.
The syntax for the InvokeMethod() method in browser script requires the
output property set variable to hold its return value. In server script, the
output property set variable is passed as the third input argument.

In order to avoid security issues, invocation of business service methods from
external sources, which includes browser scripts, is restricted. When we intend to
invoke a business service from browser scripts, we must register this business service
using the ClientBusinessServiceN application user property.

For the above code snippet to work, we must for example register the Workflow
Process Manager business service with the application object definition used in our
implementation. This is already preconfigured for most application object definitions
but we might have to add other business services—preconfigured or custom built—
with our applications.

The following screenshot shows the Siebel Automotive application's user properties:

The ClientBusinessService4 user property registers the Workflow Process
Manager business service. To register a custom business service we must add a new
instance of the ClientBusinessServiceN user property to the application object
definition (increasing the number suffix by 1) and enter the name of the business
service as the user property's value. After compiling the application object
definition, external systems and browser scripts can invoke methods of the
registered business services.

•

•

•

Chapter 23

[487]

Tracing
Custom script often has a strong impact on the behavior of a Siebel CRM application
in terms of functionality and performance. Developers and administrators who
wish to maintain certain standards for monitoring script execution and performance
can rely upon the tracing functionality, which is available for Siebel server script
languages such as eScript.

Tracing allows us to write explicit information about the script execution, including
timings and the SQL code produced by the script, to files. Script tracing is available
on a global scale on the object manager level (not discussed in this book) and on the
script level (discussed in the following section).

To implement tracing on the script level, we must use the TraceOn(), Trace(),
and TraceOff() methods provided by the application object returned by the
theApplication() function.

The following code snippet demonstrates the use of the tracing functionality.

TheApplication().TraceOn("C:\\SEBL_TRACE_$p_$t.txt","Allocation","All
");
//arbitrary code
TheApplication().Trace("Reached important point in code");
//arbitrary code
TheApplication().TraceOff();

This code will produce a file on the C:\ drive. The file name will contain the current
process ID replacing the $p placeholder, along with the current thread ID replacing
the $t placeholder, in order to guarantee a unique file name even when the code
executes in the context of an object manager process serving hundreds of users.

The input arguments "Allocation" and "All" to the TraceOn() method specify
that all object allocations and de-allocations will be written to the file. A second
option is to specify "SQL" as the second and "" (an empty string) as the third
argument to write the SQL produced implicitly by the script code to the file.

The Trace() method can be optionally used by the developer to write information to
the file while the code reaches important stages.

The TraceOff() method ends the tracing cycle.

Advanced Scripting Techniques

[488]

Considerations for script tracing
The following has to be taken into consideration when we use the tracing methods
in Siebel scripts:

Browser scripts do not support tracing methods. To accomplish tracing of
browser scripts we can write a custom eScript business service that allows
invocation of the tracing methods via a business service method invocation
in browser script.
Because of the potentially negative performance impact, we should consider
allowing the turning off of tracing in production environments. This can
be accomplished by conditionally invoking the TraceOn() method in the
ApplicationStart event handler. As an alternative, we can remove all
tracing code before moving the code to production environments.
The trace file will be written on the machine where the code executes. If we
have to deal with heterogeneous server environments (a mix of Microsoft
Windows and Unix-based operating systems) we must ensure that the file
path is reachable from all machines (Unix does not support drive letters and
backslashes).
If our company uses Siebel Remote to support Mobile Web Clients we must
be aware of the fact that trace files might get written to laptop drives where
they might be unavailable for immediate access.

Performance profiling
As responsible and thoughtful developers we should strive to use configuration
techniques with the least negative performance impact. Many performance problems
in Siebel CRM projects arise from custom script code.

The following are exemplary reasons for slow application performance during script
execution (the list is not complete):

The script interpreter is generally slower than the execution of precompiled
C++ code
The script induces complex and long-running SQL statements against
the database
Loop constructs can cause the same code to be invoked many times

To overcome these problems we can either resort to administrative or declarative
solutions or design our script code to avoid these issues.

•

•

•

•

•

•

•

Chapter 23

[489]

To support developers with the latter task, Siebel Tools provides the Script
Performance Profiler (available with the ST eScript engine in Siebel 8.1 or higher).
The performance profiler allows developers to inspect the performance figures for
each line of code early during the debugging cycle. Developers can therefore identify
potential performance bottlenecks in their code and react accordingly.

The profiler can be enabled or disabled by checking or unchecking the Enable
Profiler flag in the Scripting tab of the Siebel Tools options dialog. The following
screenshot shows the flag in checked mode:

The following procedure describes how to use the Script Performance Profiler
during debugging:

1. Ensure that the profiler is enabled as described above.
2. Invoke the Debugger for any eScript code as usual.
3. From the View menu select Profiler | Call Tree.
4. A new tab labeled Script Performance Profiler is opened in the editor pane.
5. In the Script Performance Profiler tab, expand the Root node and the node

representing your script object.
6. Execute the code several times to collect performance statistics.
7. Inspect the statistics in the Script Performance Profiler tab.

The next screenshot shows a section of the Script Performance Profiler tab after
several executions of the getPersonInfo method of the AHA Info Service
business service:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Advanced Scripting Techniques

[490]

Among other information, the profiler displays the call count for each method
invocation as well as the maximum, minimum, and total time (in milliseconds) spent
for the method invocation. In the preceding screenshot, the ExecuteQuery() method
was executed 21 times. The maximum execution time was 78 milliseconds and the
total execution time for all 21 iterations was 172 milliseconds. Compared with other's
methods, the ExecuteQuery() method consumed the majority of the method's total
execution time of 345 milliseconds.

Using the information provided by the Script Performance Profiler, developers can
make informed decisions over whether to alter the code or resort to declarative or
administrative solutions such as Siebel Workflow.

Summary
The Siebel scripting environment includes the possibility of attaching browser scripts
to object definitions such as applications, applets, business components, and business
services. In this chapter, we discussed how to write and extract browser scripts.

In addition we explored the concepts of using translatable messages instead of using
hardcoded strings. Another concept introduced in previous chapter was tracing,
which allows us to produce detailed trace files from within our script code.

Finally, we introduced the Script Performance Profiler, a helpful utility that allows
developers to identify slow-running function calls in their code.

In the next chapter we will discuss the deployment options for migrating
configuration changes between environments.

Deploying Configuration
Changes between

Environments
After the development cycle and first unit tests, it is necessary to deploy the
configuration changes made in the Siebel CRM development environment to other
environments such as test and production. Configuration changes may affect
object definitions created or modified in the Siebel Repository, files such as web
template files, and administrative data such as List of Values. In this chapter, we will
discuss the functionality of Siebel CRM to successfully manage the deployment of
configuration from one environment to another.

The chapter is structured as follows:

Repository migration
Exporting and importing repository data
Exporting and importing administrative data
Application Deployment Manager (ADM) overview

Repository migration
At certain release stages in a Siebel CRM project, after developers have modified or
created hundreds or thousands of object definitions in the Siebel Repository, it is
necessary to deploy the entire Siebel Repository from the development database to
the target environment, be it one of various test environments or the final production
environment. This task, commonly referred to as dev2prod (development to
production), is supported by the Migrate Repository procedure, which is provided
by the Siebel Database Configuration Assistant.

•
•
•
•

Deploying Configuration Changes between Environments

[492]

The configuration assistant provides a graphical user interface to capture relevant
parameter information and then invokes the Siebel Upgrade Wizard, which executes
the necessary tasks to complete the migration. The Migrate Repository procedure
includes the following tasks:

Export the entire Siebel Repository from the source database to a file
Import the data from the flat file to the target database
Rename the old Siebel Repository in the target database
Synchronize the tables and indexes of the target database with the data layer
object definitions of the new repository
Update the schema version information in the target database

Despite the fact that the majority of the tasks in the preceding list can be carried out
manually (using shell commands and scripts), it is highly recommendable to use the
tools provided by the Siebel application framework to ensure accuracy and allow
monitoring of the process.

We can invoke the Migrate Repository procedure from any machine where the Siebel
Database Server Utilities (dbsrvr) are installed. This is necessarily a Siebel Server
machine because the Database Server Utilities can only be installed on a machine
hosting a Siebel Server installation.

On Microsoft Windows operating systems, we can use the Windows start menu
entries to launch the Database Server Configuration Wizard. On Linux and other
UNIX-based operating systems, we have to run preconfigured scripts on the
command shell. Details about the Configuration Wizard can be found in the book
Siebel CRM 8 Installation and Management, by the same author.

The following table describes the process of invoking the Siebel Database
Configuration Wizard and executing the Migrate Repository procedure. The example
is for Microsoft Windows operating systems:

Step Description Tasks and Example Values
1 Start the Configuration Wizard Click the Database Server

Configuration shortcut in the Windows
start menu.

2 Siebel Server directory Keep the default path.

Click Next.
3 Siebel Database Server Utilities

directory
Keep the default path.

Click Next.

•

•

•

•

•

Chapter 24

[493]

Step Description Tasks and Example Values
4 Database Platform Select Oracle Database Enterprise

Edition.

Click Next.
5 Task selection Select Migrate Repository.

Click Next.
6 Action selection Select Read source repository directly

from the database.

Click Next.
7 Target environment Select The target environment will be

offline when migration starts.

Click Next.
8 Schema changes Select There are new schema changes to

be applied.

Click Next.
9 Select base language Select English (American).

Click Next.
10 ODBC Data Source Name (source) Enter Siebel_DSN.

Note: This is the name of the System
DSN for the source enterprise.

Click Next.
11 Siebel Database User Name and

Password (source)
User Name: SADMIN

Password: 7xvfert8

Click Next.
12 Siebel Database Table Owner and

Password (source)
Table Owner: SIEBEL

Password: 34ujnpq9

Click Next.
13 Source and target repository name Keep the defaults ("Siebel Repository").

Click Next.
14 Target Database Platform Select Oracle Database Enterprise

Edition.

Click Next.

Deploying Configuration Changes between Environments

[494]

Step Description Tasks and Example Values
15 Unicode selection Select UNICODE Database.

Click Next.
16 ODBC Data Source Name (target) Enter the name of the System DSN for

the target enterprise.

Note: We may have to create system
DSN entries for the source and target
databases on the machine where this
process executes.

Click Next.
17 Siebel Database User Name and

Password (target)
User Name: SADMIN

Password: 99trfmn5

Click Next.
18 Siebel Database Table Owner and

Password (target)
Table Owner: SIEBEL

Password: plm4qcf6

Click Next.
19 Index and data table space names

(target)
Index Table Space Name: SIEBELDB_
IDX

(Data) Table Space Name: SIEBELDB_
DATA

Click Next.
20 Oracle parallel indexing Keep the default (Does not use…)

Click Next.
21 Security group and log output

directory
Keep the defaults.

Click Next.
22 Apply configuration changes Select Yes apply configuration changes

now.

Click Next.
23 Summary Review the summary information.

Click Next.
24 Target Enterprise Shutdown (not part

of the wizard)
At this point, we must ensure that all
Siebel Servers in the target environment
are shut down.

25 Do you want to execute configuration? Click Yes.

Chapter 24

[495]

Step Description Tasks and Example Values
26 The Siebel Upgrade Wizard is

displayed
Click OK in the Siebel Upgrade Wizard
dialog.

27 During the installation process, several
command windows are opened

Ensure that you do not close or make
selections in any of the command
windows.

Wait for the Siebel Upgrade Wizard to
complete.

28 The configuration wizard displays the
message Execution successful

Click OK to confirm successful
execution of the configuration wizard.

29 The configuration wizard jumps to the
Siebel Server directory selection

Click Cancel in the Siebel Configuration
Wizard dialog.

30 Confirm exiting the configuration
wizard

Click Yes.

31 Siebel Upgrade Wizard displays
Complete

Click OK in the Siebel Upgrade Wizard
dialog.

To verify the successful execution of the Migrate Repository procedure, we
should use Siebel Tools to connect to the target database and verify that the Siebel
Repository has been imported.

Additional verification steps include querying the target database with SQL tools of
our choice to check for the existence of new tables, columns, or indexes—in case they
have been created during the development project.

After successful migration of a Siebel Repository to a target database we must copy
the accompanying SRF file to the target server and (if applicable) to Mobile Web
Client machines. When browser scripts have been developed, the genbscript utility
(described in the previous chapter) must be used to extract browser scripts from the
SRF file. The resulting browser script folder must be copied to the language-specific
subfolder of the public directory (for example PUBLIC\enu) on the web server
machine that hosts the Siebel Web Server Extension (SWSE).

Exporting and importing repository data
When a full repository migration is not needed, which is very likely the case in test
situations, we can use the Export Repository and Import Repository procedures
provided by the Database Server Utilities. The invocation of these procedures is
similar to the process described in the previous section.

Deploying Configuration Changes between Environments

[496]

Both procedures simply invoke the repimexp command line utility and pass the
parameters entered using the Configuration Wizard. The repimexp utility can also
be used manually, for example to export and import repositories from and to local
developer databases.

The result of the export procedure is a flat file with a .dat suffix. This file contains all
repository data. We can then use the import procedure to load the file's content into a
target Siebel database. The import result is a new repository in the target database.

The following procedure describes how to use the repimexp command line utility to
export a repository into a flat file:

1. Open a command shell on a machine where Siebel Tools or the Siebel
Database Server Utilities are installed.

2. At the command prompt, navigate to the BIN directory of the Siebel software
installation folder. For example, we can navigate to the D:\SIA81\TOOLS\BIN
path when Siebel Tools is installed on D:\SIA81\TOOLS.

3. At the command prompt enter a command similar to the following:
repimexp /A E /C "SEAW Local Db default instance" /U AHANSAL /P
tzU87tr /D SIEBEL /R "Siebel Repository" /F D:\TEMP\siebrep.dat /L
D:\TEMP\siebrep_exp.log

The preceding command line example invokes the repimexp utility with the
following minimum set of required parameters:

Parameter Description
/A Action to be executed. Possible values are E (export), I (import), X (import

language-specific data only), and D (write information about a flat repository
file to the command window).

/C The name of an ODBC data source (DSN) to be used to connect to the
database. Double quotes must be used to enclose the name if it contains
spaces.

/U The username to be used to connect to the database.
/P The password for the user account.
/D The name of the table owner.
/R The name of the repository to export or import.
/F The full path to the data file.
/L Full path to a log file, which will contain the information written to the

command window.

Chapter 24

[497]

A full list of required and optional parameters can
be obtained by entering repimexp without further
parameters at the command line.

4. Wait for the process to finish. The export process can be monitored at the
command prompt, which displays the progress table by table.

The following screenshot shows the output of the repimexp utility during an
export process:

A command similar to the following can be used to import an existing flat file into a
target database:

repimexp /A I /C "SEAW Local Db default instance" /U AHANSAL /P tzU87tr
/D SIEBEL /R "Test Repository" /F D:\TEMP\siebrep.dat /L D:\TEMP\siebrep_
imp.log /G ALL

The preceding command line example will invoke the repimexp utility for an import
action. The majority of parameters are similar to the export action. The /A (action)
switch must be followed by I to execute an import process. The /G switch is specific
to the import action and must be followed by a comma separated list of three-letter
language codes or ALL (for all languages) in order to specify the languages that
should be imported from the .dat file.

As described in the previous section, we must also cater for the correct deployment
of the SRF file and, if applicable, the generation of browser scripts.

Deploying Configuration Changes between Environments

[498]

Exporting and importing selected repository
objects
When the process of exporting or importing the entire repository is not applicable,
we can use the Siebel Tools archive files (.sif) to export and deploy selected object
definitions from a source database to a target database.

The process of working with archive files has been described in the sections Archiving
object definitions and Importing archived object definitions of Chapter 2, Developer Tasks.

In a deployment scenario, we would use the Siebel Tools archive feature to export
one or more object definitions from the development database. Then we could use
Siebel Tools to connect to a target database—for example, a test environment—and
import the archive file's content. Scenarios like the preceding are only supported
when both environments are on the same Siebel base version such as 8.1.

It must be noted here that we can also use the Application Deployment Manager
(ADM) functionality of Siebel 8 or higher to export and deploy selected repository
objects. An overview of ADM will be given later in this chapter.

Exporting and importing administrative
data
Under certain circumstances, developers not only modify object definitions in the
Siebel Repository but also create or modify administrative data such as List of
Values or EAI Data Maps. This type of data resides outside of the repository tables
and is therefore not within the scope of the tools and utilities discussed so far in
this chapter.

With the ADM, introduced with Siebel Version 7.7, the Siebel application framework
provides a simple and extensible technique to export and import administrative
data. ADM uses basic Siebel EAI technology such as integration objects, EAI Siebel
Adapter, and workflow processes. It must be noted here that, for some prominent
object types, it is also possible to use native export and import features. For example,
EAI Data Maps or iHelp items can be exported and imported as XML files by using
the respective menu commands on the administrative views for these objects.

Chapter 24

[499]

The following procedure uses List of Values data to describe how to export
administrative data using ADM:

1. Log on to the Siebel client using an administrative user account.
2. Navigate to the Application Deployment Manager screen via the site map.
3. Navigate to the Deployment Projects view.
4. Create a new deployment project record or copy an existing project.
5. Enter the following values:

Name: AHA LOV
Export to File: checked
Session Configurable: checked

6. In the lower list applet, create a new record with the following values:
Data Type Name: LOV
Deployment Method: Upsert
Deployment Filter: [Value]='TODO_TYPE'

This filter ensures that only records for the List of Values
type TODO_TYPE are exported.

As an alternative to typing the filter manually, we can click the select button
in the Deployment Filter field and pick one of the predefined queries for
the data type. Because of the fact that business component field names,
referenced by predefined queries, and integration object component field
names, used by ADM, may differ, we may receive errors when we use the
predefined query option.

7. Click the Validate Filter button in the lower list applet. If no message is
displayed, the filter is valid. If an error message appears, correct the syntax
of the deployment filter and validate again until no error is displayed.

8. Click the Enable button in the upper list applet. Once a deployment project is
enabled, it can no longer be modified. We must copy the deployment project
record to be able to modify the project.

9. Navigate to the Deployment Sessions view.
10. Create a new session record.
11. Select the deployment project created before from the drop-down list in the

Project Name field.

°

°

°

°

°

°

Deploying Configuration Changes between Environments

[500]

12. Press Ctrl+S to save the record. This populates the lower list applet with the
data objects.

13. Click the Deploy button in the upper list applet.
14. In the Export dialog box, enter the name of a folder where the export files

should be written to.
15. Click the Export button.
16. Verify that the Status field changes to Export Completed. This indicates

successful export of the data. The most likely cause for an error during export
is that the target folder was not reachable.

The target folder now contains three new files. The .ini file should be removed from
the folder as it exists only for logging purposes. The XML file with _des in the name
is the so-called descriptor file,which must accompany the other XML file, the data
file, when we intend to use the Siebel Management Server to deploy the data file as
part of an ADM package.

If we only intend to import the data in the target environment via the Application
Deployment Manager screen, the only file we need to keep is the XML data file.

The following procedure describes how a file containing administrative data can be
imported in a target environment:

1. Log on to the Siebel client at the target enterprise using an administrative
user account.

2. Navigate to the Application Deployment Manager screen, Deployment
Sessions view.

3. Right-click in the upper list applet to open the context menu and select
Deploy from Local File.

4. Click the Browse button.
5. In the Choose File dialog, navigate to the folder that contains the XML data

file and select the file.
6. Click the Open button.
7. Click the Import button.

We can verify the success of the import in the following ways:

When the Message Broadcast bar on the bottom of the application window
is enabled, a success message will appear within the update interval time
frame, which is set to two minutes by default.

•

Chapter 24

[501]

Navigate to a view that allows verification of the data import. For example,
to verify a List of Values import, we can navigate to the List of Values view
in the Administration - Data screen.
Navigate to the Administration - Integration screen, EAI Queue view.
Query for a queue using the name of the import file as part of the queue
name. In the lower list applet, verify that the Status field for the import file
has a value of Confirmed.

Application Deployment Manager (ADM)
overview
Siebel Application Deployment Manager (ADM) can be used to migrate
configuration changes from a source Siebel enterprise to one or more target Siebel
enterprises.

In Siebel 8, ADM supports the following data types:

Administrative data: It is created or modified by administrators using the
administrative screens in the Siebel Web Client. As discussed in the previous
section, we can simply export and import administrative data using the
Application Deployment Manager screen or deploy administrative data
using an ADM package. ADM supports the registration of new data types
by developers. This requires the creation of integration objects and content
objects in the Siebel Repository and is not within the scope of this book.
Repository data: Repository objects can be exported to Siebel Tools Archive
(.sif) files. When using ADM functionality embedded in Siebel Tools, a
descriptor file is created along with the .sif file so that repository data can
be part of an ADM package.
Files on Siebel servers.
Files on web servers with the Siebel Web Server Extension (SWSE) installed.

The following file types can be deployed using ADM:

Siebel Repository File (.srf)
Siebel Web Template (.swt)
BI Publisher Report Templates and related files (.rtf and others)
Cascading style sheets (.css), graphic files, and browser scripts

•

•

•

•

•

•

•

•

•

•

Deploying Configuration Changes between Environments

[502]

The deployment functionality of ADM relies upon the Siebel Management
Server framework. The following diagram describes the Siebel Management
Server framework:

From the preceding diagram, we can learn the following:

Configuration changes in the source enterprise can be made at the repository
level, administrative data level, or to files that reside on the Siebel Server or
the web server.
An ADM package is a directory structure that is created using the admpkgr
command line utility.
Repository data (R) is exported to the package directory using Siebel Tools.
This can be done manually or via command line scripts.
Administrative data (D) such as List of Values (LOV) can be exported
manually using the Application Deployment Manager screen or
automatically using the ADM Batch Processor server component.
New and modified files (F) must be copied to the package directory using
common file copy mechanisms.

•

•

•

•

•

Chapter 24

[503]

The Siebel Management Server must be installed and configured to support
the deployment of ADM packages to target enterprises. Java programs
on the Siebel Management Server forward the package content to Siebel
Management Agents, which serve as an entry point on each Siebel Server in
the target environment.
The Siebel Management Agent communicates with the ADM Object
Manager and invokes ADM workflow processes, which process the
incoming repository and administrative data and subsequently write it
to the Siebel database.
The Siebel Management Agent also forwards the files to the Siebel Server's
WEBMASTER directory, which is then synchronized with the web server.

More information about the installation of the Siebel Management Server
infrastructure, the configuration of ADM, and the deployment process can be
found in the book Siebel CRM 8 Installation and Management by the same author.

Summary
The Siebel CRM framework provides various mechanisms to migrate configuration
changes between environments. In this chapter we discussed the most important of
these mechanisms.

The Migrate Repository procedure, supported by the Siebel Upgrade Wizard, allows
the automated export and import of the entire Siebel Repository from one Siebel
environment to another Siebel environment.

Deployment Projects and sessions in the Application Deployment Manager screen
are a useful mechanism to quickly migrate administrative data such as List of Values
from a source environment to a target environment.

If the Siebel Management Server infrastructure is installed, ADM can be used to
deploy packages, which can contain repository objects, administrative data, and files.

•

•

•

Installing a Siebel CRM
Self-Study Environment

If you wish to follow this book's case study examples or wish to have a safe
self-study environment for Siebel CRM, you need at minimum the following
Siebel software and documentation:

Siebel Mobile Web Client
Siebel Sample Database
Siebel Tools
Siebel Bookshelf

In this appendix, we will briefly outline the necessary steps to download, install, and
configure Oracle Siebel CRM software.

Hardware requirements
The following minimum hardware configuration is recommended to completing the
installation successfully and allow flawless operation of the self-study environment:

2 GB RAM
1.5 GHz CPU
10 GB free disk space for installation files and software

The System Requirements and Supported Platforms document, part of the Siebel
CRM documentation by Oracle, provides detailed information about hardware and
software requirements for each Siebel version. The document for version 8.1 can be
found at http://download.oracle.com/docs/cd/E11886_01/V8/CORE/SRSP_81/
booktitle.html.

•

•

•

•

•

•

•

Installing a Siebel CRM Self-Study Environment

[506]

It is also possible, and recommendable, to install a self-study environment on a
virtual machine. Oracle's VirtualBox product is freely available as Open Source
Software at http://www.virtualbox.org.

Third-party software requirements
The following third-party software should be installed as a prerequisite:

32-bit Microsoft Windows operating system (XP or later)
Microsoft Internet Explorer browser (version 6 or 7)
Java Runtime Environment (JRE) 1.5 or later
Download Management Software (for example Free Download Manager
available at http://freedownloadmanager.org)
Archive software (for example 7-Zip available at http://www.7-zip.org)

Downloading and extracting Siebel CRM
software installers
The following is the process of downloading and extracting Siebel CRM
software installers:

Register at Oracle E-Delivery
Understand the license agreement
Download the installation archives
Download Oracle Siebel Documentation
Extract the installation archives
Extract the Siebel installers
Adjust browser security settings

In the following section, we will discuss these steps in detail.

Registering at Oracle E-Delivery
Oracle makes Siebel CRM software available for download on its E-Delivery website
at http://edelivery.oracle.com. Before we can download software from this
site, we have to register with our name, company, and e-mail address and accept the
trial license terms and export restrictions outlined on the website. Oracle will send a
notification e-mail after approximately one business day.

•

•

•

•

•

•

•

•

•

•

•

•

Appendix A

[507]

Understanding the license agreement
Oracle grants an unlimited developer license for its software. The license agreement
grants "a nonexclusive, nontransferable limited license to use the programs only for
the purpose of developing, testing, prototyping, and demonstrating your application,
and not for any other purpose."

It is important that we read and understand the license agreement.

Downloading the installation archives
Because of the size of the .zip archives that contain the Siebel CRM installation
files, it is highly recommendable to use a download management tool such as Free
Download Manager.

After logging in to Oracle's E-Delivery website, we choose Siebel CRM in the
Select a Product Pack drop-down list and choose Microsoft Windows (32-bit) in
the Platform drop-down list. The following screenshot shows this selection:

After clicking the Go button a list of media packs is displayed. To obtain the
installers for Siebel Industry Applications 8.1.1, used throughout this book for
the case study examples, we must click the media pack named Siebel Business
Applications (with Translations) Media Pack 8.1.1.0 Release for Microsoft
Windows (32-bit) (Part Number B52660-07).

From the resulting list, the following .zip archives must be downloaded and stored
in a single folder:

Siebel Business Applications Version 8.1.1.0 Siebel Client (Part 1 of 2)
Part Number: V14869-01 Part 1 of 2 (Full size: 1.9 GB)
This archive contains the base installer for the Siebel Mobile/Developer
Web Client and some language packs (including the American English (enu)
language pack).

•

Installing a Siebel CRM Self-Study Environment

[508]

Siebel Business Applications Version 8.1.1.0 Siebel Client (Part 2 of 2)
Part Number: V14869-01 Part 2 of 2 (Full size: 624 MB)
This archive contains the remaining language packs for the Siebel Mobile/
Developer Web Client.
Siebel Business Applications Version 8.1.1.0 Siebel Client Part 2 (Part 2 of 2)
Part Number: V15040-01 Part 2 of 2 (Full size: 953 MB)
This archive contains the base installer for the Siebel Sample Database as well
as language packs for Handheld applications and the sample database.
Siebel Business Applications Version 8.1.1.0 Siebel Tools
Part Number: V15391-01 (Full size: 1.9 GB)
This archive contains the Siebel Tools installer.
Siebel Business Applications Version 8.1.1.0 ImageCreator Files
Part Number: V14502-01 (Full size: 213 MB)
This archive contains the Image Creator files for all supported
operating systems.

The ZIP Preview feature of Free Download Manager can be used to dramatically
reduce the download size by only selecting the files we need. Regarding language
packs, we should always download the American English (enu) language pack.
Other language packs can be downloaded as needed.

Extracting the installation archives
We should use an unzip utility such as 7-Zip to extract the entire content of the
downloaded .zip files to a separate folder.

Downloading Oracle Siebel documentation
The Oracle Siebel Documentation (also known as Siebel Bookshelf) can be accessed
online and downloaded in various versions from the following Oracle Technology
Network website:

http://www.oracle.com/technetwork/documentation/siebel-087898.html

To support the examples in this book, it is recommendable to download the Siebel
Business Applications 8.1 Documentation Library.

Extracting the Siebel installers
The Siebel Image Creator, extracted along with the installation archives, must be
used to create the Siebel installation images.

•

•

•

•

Appendix A

[509]

The following procedure describes how to create a Siebel installation image for Siebel
Tools, the Siebel Mobile or Developer Web Client, and the Siebel Sample Database
using the Siebel Image Creator:

Step Description Tasks and Example Values
1 Start the Siebel Image Creator Double-click the Windows_

ImageCreator.exe file.
2 The Welcome dialog is displayed Click Next.
3 Display of options Choose Create a new image….

Click Next.
4 Specify the directory to which the

installer images should be copied
Example: C:\Siebel_Install_Image.
Click Next.

5 Application type selection Select "Siebel Industry Applications".
Click Next.

6 Select operating system platform Select Windows.
Click Next.

7 Select products Select the following:
Siebel Tools
Siebel Web Client
Siebel Sample Database

Click Next.

•

•

•

8 Specify languages Select ENU – English (American).
Click Next.

9 Progress of the file extraction
process is displayed

Wait for completion.

10 Success message is displayed Click Finish.

As a result, the folder specified in step 4 of the previous procedure now contains
several subfolders with the installers for the Siebel Mobile or Developer Web Client,
Sample Database, and Siebel Tools.

Adjusting the browser security settings
In order to allow the browser to download and install the ActiveX controls for
the Siebel High-Interactivity Framework, we must adjust the security settings of
Microsoft Internet Explorer as follows:

1. Open Internet Explorer.
2. Navigate to the Tools menu and select Options.

Installing a Siebel CRM Self-Study Environment

[510]

3. In the Options dialog, click the Security tab.
4. Click the Trusted Sites icon.
5. Click the Sites button.
6. Uncheck the flag Require server verification (https:) for all sites in

this zone.
7. In the Add this website to the zone field enter http://localhost.
8. Click the Add button.
9. Repeat steps 7 and 8 and create an entry for your machine's hostname.

You can obtain the hostname of your machine by entering
hostname in a command shell window.

10. Click the Close button.
11. Click the Custom Level button in the Security Level area.
12. From the Reset to drop-down list on the bottom of the dialog, select Low.
13. Click Reset….
14. Click Yes.
15. Click OK.
16. Click Apply.
17. Click OK.

Installing Siebel CRM client software
The installation process for a self-study environment is as follows:

Install the Siebel Mobile Web Client
Install the Siebel Sample Database
Install Siebel Tools
Configure Siebel Tools to connect to the sample database
Download the Demo Users Reference

•

•

•

•

•

Appendix A

[511]

Installing the Siebel Mobile Web Client
The following procedure describes how to install the Siebel Mobile Web Client. The
Windows user account used during this installation must have administrative rights:

Step Description Tasks and Example Values
1 Start the Oracle Universal Installer Double-click the oui.exe file in

the Siebel_Web_Client/Disk1/
install folder.

2 The Welcome dialog is displayed Click Next.
3 Specify the home directory Example: C:\Siebel\8.1\Client_1

(default value).
Click Next.

4 Prerequisite checks The installer performs checks for
prerequisite checks. Verify that all
checks are passed successfully.
Click Next.

5 Select Languages Select English.
Click Next.

6 Welcome to Siebel Business
Applications Client Setup

Click Next.

7 Type of Client Select "Mobile Web Client".
Click Next.

8 Siebel Remote Server hostname Keep the default value.
Click Next.

9 Search Server Information Keep the default values.
Click Next.

10 Summary Review the summary information.
Click Install.

11 The installation progress is displayed
12 Microsoft Internet Explorer is launched The browser loads the predeploy.htm

file in the client's bin directory to load
the preconfigured ActiveX controls.
When the page displays The download
is complete… the browser window
must be closed to continue with the
installation.

13 The installation process continues
14 Success Message Click Exit and Yes to leave the installer.

Installing a Siebel CRM Self-Study Environment

[512]

Installing the Siebel sample database
The following procedure describes how to install the Siebel Sample Database. The
installation path must be set to the folder where the Siebel Mobile Web Client has
been installed previously:

Step Description Tasks and Example Values
1 Start the InstallShield Wizard. Double-click the install.exe file in the

Siebel_Sample_Database folder.
2 Choose Setup Language Example: English.

Click OK.
3 The Welcome dialog is displayed Click Next.
4 Setup Type Select Custom.

In the Destination Folder section, click
Browse… and navigate to the Siebel client
installation directory.
Click Next.

5 Select Components Keep Sample Files selected.
Unselect Sample Search Index.
Click Next.

6 Choose Languages Select English (American).
Click Next.

7 Select Program Folder Keep the default.
Click Next.

8 Installation progress is displayed Leave the installer window open and wait
for the process to finish.

9 Event Log Summary information is displayed.
Click Next.

10 The wizard displays successful
completion

Click Finish.

Appendix A

[513]

Installing Siebel Tools
The following procedure describes how to install Siebel Tools.

Step Description Tasks and Example Values
1 Start the Oracle Universal Installer. Double-click the oui.exe file in the

Siebel_Tools/Disk1/install folder.
2 The Welcome dialog is displayed. Click Next.
3 Select a Product to install Select Siebel Business Application Tools.

Click Next.
4 Specify the home directory Example: C:\Siebel\8.1\Tools_1

(default value).
Click Next.

5 Prerequisite checks The installer performs checks for
prerequisite checks. Verify that all checks
are passed successfully.
Click Next.

6 Select Languages Select English.
Click Next.

7 Siebel Database Server Select Oracle Database Server.
Click Next.

8 Database Identification Database Alias: orcl
Table Owner: SIEBEL
Click Next.

9 File System Directory Path Example:
C:\Siebel\8.1\Client_1\SAMPLE\
FILES

Click Next.
10 Siebel Remote Server hostname Keep the default

Click Next.
11 Enterprise Server Information Gateway Name Server address: localhost.

Enterprise Server: Siebel
Click Next.

12 Summary Review the summary information.
Click Install.

13 The installation progress is displayed
14 Success Message Click Exit and Yes to leave the installer.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Installing a Siebel CRM Self-Study Environment

[514]

Configuring Siebel Tools to connect to the
sample database
The following procedure must be followed to allow Siebel Tools to connect to the
Siebel Sample Database:

1. Use Windows Explorer to navigate to the Siebel Mobile Web Client
installation directory.

2. Open the uagent.cfg file in the client's BIN\ENU directory with Notepad.
3. Copy the value of the ConnectString parameter in the [Sample] section of

the uagent.cfg file to the clipboard.
4. Navigate to the Siebel Tools installation directory.
5. Open the tools.cfg file in the Siebel Tools BIN\ENU directory with

Notepad.
6. Overwrite the value of the ConnectString parameter in the [Sample]

section of the tools.cfg file with the value you copied in step 3.
7. Save and close all files.

Using the Demo Users Reference
The Demo Users Reference document in the Siebel Bookshelf (http://download.
oracle.com/docs/cd/E14004_01/books/DemoUser/DemoUserTOC.html) can be
used to find demo user accounts with different roles, which may be useful during
exploration of standard Siebel CRM functionality.

Importing Code Files
This book contains case study examples that are complemented by code files. In
this appendix, we will briefly discuss the techniques to import the code files. The
following will be covered:

Importing Siebel Tools archive files (SIF)
Importing administrative data files

Importing Siebel Tools archive files (SIF)
The following procedure describes how to import a Siebel Tools archive file:

1. Log in to Siebel Tools if necessary.
2. In the Tools menu, select Import from Archive…
3. In the Select Archive to Import dialog, browse to a .sif file.
4. Click the Open button.
5. Keep the default settings for conflict resolution (merge) and click Next.

•

•

Importing Code Files

[516]

6. In the Review Conflicts and Actions page, we can optionally change the
merge settings by right-clicking elements which are present in both the
repository and the file. The following screenshot shows this page:

7. Click Next.
8. Click Yes to confirm the summary message.
9. Wait for the import process to finish.
10. In the Summary page, click Finish to close the Import Wizard.

By following the procedure described previously, you can import the .sif archives
provided with the code files in order to follow the book's case study examples. Please
note that the archive files may only be imported in a self-study environment and
must not be applied to production environments.

Appendix B

[517]

Importing administrative data files
The following procedure describes how to import administrative data files:

1. Log in to the Siebel Web Client.
2. Navigate to the Application Deployment Manager screen, Deployment

Sessions view.
3. Right-click in the upper list applet to open the context menu and select

Deploy from Local File.
4. Click the Browse button.
5. In the Choose File dialog, navigate to the folder that contains the XML data

file and select the file.
6. Click the Open button.

The screenshot below shows the Deployment Sessions view with the
Deploy from Local File dialog:

7. In the Deploy from Local File dialog, click the Import button.
8. A message broadcast will indicate the successful import. The time for the

message to appear depends on the update interval of the Message Broadcast
bar on the bottom of the Siebel application window and is two minutes
by default.

Importing Code Files

[518]

9. In case of errors, ensure that you are using the correct version of Siebel
CRM applications. All code files have been produced for Siebel Industry
Applications (SIA) 8.1.1.

By following the procedure described above, you can import administrative data
files into your self-study environment in order to follow this book's case study
examples. Please note that the administrative data files may only be imported in
self-study environments and must not be imported in productive environments.

More Information
You are at the end of the book. Congratulations! However, you may have just
begun with a steep learning path. In order to ease the mission of finding additional
information about Siebel CRM, this appendix provides the following information:

Getting trained
Finding information

Please note that the internet addresses in this chapter have been thoroughly revised
at the time of writing this book. Given the nature of the internet, they could have
changed in the meantime.

Getting trained
The success of a Siebel CRM project, or any standard software implementation
project in general, is linked to the education of the professionals who undertake it.
Complex systems like Siebel CRM will not reveal their intricate patterns to naive
consultants (or their managers) who believe in self-study or fast-track trainings.

The money saved on training (or no training) will be spent equally fast on project
delay. It is paramount for the Siebel professional to expose him or herself to high
quality instructor-led training, which is provided for example by Oracle University
and its training partners throughout the world.

The following website addresses shall serve as an entry point for your personal
training plan.

Oracle University: http://education.oracle.com
Oracle Partner Network: http://opn.oracle.com
Oracle Technology Network: http://otn.oracle.com

•

•

•

•

•

More Information

[520]

Finding information
Siebel CRM has been developed under the assumption that customers will employ
their own technicians or hire external consultants to install, configure, and manage
the software. Documenting the necessary steps to do so and also providing
information about the features of Siebel CRM has evolved into what is known
today as the Siebel Bookshelf.

The Siebel Bookshelf
Oracle has made the entire Siebel documentation available on its web servers. We
can access the documentation library for each version from Siebel 6 and above online
or download it from the following internet address: http://www.oracle.com/
technetwork/documentation/siebel-087898.html.

Before we start downloading and installing Siebel CRM, we should ensure that we
have read and digested the information given to us by the technical writers at Oracle.
The following is a list of recommended Bookshelf guides for the ambitious newbie:

Deployment Planning Guide
Developing and Deploying Siebel Business Applications
Fundamentals
Going Live with Siebel Business Applications
Installation Guide (for your operating system)
Overview: Siebel Enterprise Application Integration
System Administration Guide

Oracle forums
Not every trick, bug, or workaround can be found in the official Siebel
documentation. While you are reading these lines, somebody encounters a problem
or explores some functionality within Siebel CRM. Many Siebel professionals use the
Oracle Forums to post questions and findings. Experienced consultants pick up the
posts and answer them, so the community has a great place to search for information
outside the official documentation.

We can access the Oracle Forums at http://forums.oracle.com.

•

•

•

•

•

•

•

Appendix C

[521]

My Oracle Support
Customers, partners, and employees of Oracle have access to the Oracle support
system, which not only allows creation of service requests, but also searching of the
knowledge base of resolved service requests, bulletins, and other documents.

My Oracle Support is a centralized portal for all Oracle products and can be accessed
via the URL http://support.oracle.com.

The Internet community
Various channels exist to share findings and knowledge on the internet. Over the
past few years, many IT professionals decided to create their own websites, weblogs,
or Twitter channels to distribute information on Siebel CRM.

A good starting point for our research in this vast amount of information may be
Google's blog search: http://blogsearch.google.com.

The author's blog on Siebel CRM and Oracle Business Intelligence can be found at
http://siebel-essentials.blogspot.com.

Index
Symbols
+ (String Concatenation) function 143
.css, 501
.dat file 497
.dat suffix 496
.rtf 501
.srf 501
.swt 501
/A (action) switch 497
/A parameter 496
/C parameter 496
/D parameter 496
/F parameter 496
/G switch 497
/h command line switch 468
/L parameter 496
/P parameter 496
/R parameter 496
/U parameter 496
<swe:applet>, SWE tag 276
<swe:case>, SWE tag 275
<swe:control>, SWE tag 275
<swe:default>, SWE tag 275
<swe:for-each>, SWE tag 275
<swe:image>, SWE tag 275
<swe:include>, SWE tag 275
<swe:menu>, SWE tag 275
<swe:pageitem>, SWE tag 275
<swe:switch>, SWE tag 275
<swe:this>, SWE tag 275
<swe:threadbar>, SWE tag 276
<swe:viewbar>, SWE tag 276
<swe:viewlink>, SWE tag 276
[Field reference] function 142
[InfraUIFramework] section 427

1:1 extension table 161, 162
1:M extension table

business component, creating 184

A
accelerator

about 302, 303
command, creating 303, 304

Account - New Order workflow process 298
Account Activity List Applet 381

adding 119
Account Contact List Applet 381
Acknowledgement Web Page 284
action parameters 250
action type 250

INVOKE 251
INVOKEALL 251
INVOKESEL 251
INVOKESVC 252
INVOKESVCALL 253
INVOKESVCSEL 253
SET 251

ActivateField("Field") 453
activate functionality 367
ActivateMultipleFields("PropertySet") 453
ActivateMultipleFields() method 453
ActivateMultipleFields(FieldList) 464
ActiveBusObject() method 450
active column 205
Active Field, user property name 247
Active Value, user property name 247
ActiveViewName() method 450
AddChild(PropertySet) method 457
ADM Batch Processor server component

502

[524]

Administration - Business Process screen
427

Administration - Data Validation screen
115

administrative data
about 501
exporting, ADM used 499
import, verifying 500
importing 500

Administrative data (D) 502
administrative data files

importing, steps 517
administrative solution 459
administrative views 403
AdminMode, user property 342
Admin NoDelete, user property name 247
Admin NoUpdate, user property name 247
AHA, requisites

sales - retail order 68
sales - update customer 67

AHA business processes
campaign tracking, marketing 64, 65
requisites 65, 67
sales - retail order 63, 64
sales - update customer 62, 63

AHA Campaign Indicator 134
AHA City Search property 420
AHA Create Account Task View 414
AHA Create Order Task View 415
AHA Create Quote Task View 415
AHA CSN Search property 420
AHA Currency Code 390
AHA Current Revenue 390, 393
AHA Customer Document List Applet 118
AHA Customer Documents business com-

ponent 208
AHA Customer Offer business component

190
AHA Customer Profile Form Applet 90, 408
AHA Last Record 390, 393
AHA Minimum Expected Value 390
AHA Name Search property 420
AHA Number Of Days 390
AHA Number Of Days process property

391
AHA Partner City property 418
AHA Partner CSN property 418

AHA Partner Name property 418
AHA Partner Query Task Applet 408-412
AHA Partner Query Task View 413, 414
AHA Partner Query TBC 411
AHA Prototype 122
AHA Record Count 390
AHA Simple Order Form Applet 410, 411,

429
AHA Simple Quote Form Applet 409, 410
AHA Status Object Data 361
AHA Synchronize Customer Documents

workflow process 368, 372
AHA Target Data 360
AHA Total Expected Revenue 390, 393
All business services with class CSSEAIDa-

taSyncService 317
All business services with class CSSWSOut-

boundDispatcher 317
All Hardware (AHA)

about 138
background 61

AllLangIndependentVals, user property 342
All Mode Sort, user property name 247
All ... across Organizations 235
applet

about 24, 83
new field, exposing 135-137
relationship, with SWT 86
relationship, with web templates 86
Web Templates 84

applet buttons
creating 298
custom applet button, creating 298-301

Applet event handlers
WebApplet_PreCanInvokeMethod 438
WebApplet_PreInvokeMethod 438

applet menu items
configuring 306, 307

applet messages
using 428-431

applet message type 428
applet object methods, Siebel Object

interfaces
BusComp() method 452
BusObject() method 452
cons 437

[525]

InvokeMethod("Method",Arguments) 452
pros 437

applets, docking window 12
applet types, Siebel CRM

associate applets, configuring 108
association applet 84
chart applet 84
chart applet, configuring 103, 106
detail applet 84
form applet 84
list applet 84
Multi-Value-Group (MVG) Applet 84
Multi-Value-Group, configuring 108
pick applet 84
pick applet, configuring 107
playbar applet 84
task applet 84
tree applet 84

applet user properties
CanInvokeMethod 256
Default Applet Method 256
Default Focus... 256
Named Method N 256
NoDataHide 256

Applet Web Templates
<swe:applet>, SWE tag 276
<swe:control>, SWE tag 275
<swe:for-each>, SWE tag 275
<swe:threadbar>, SWE tag 276
<swe:viewbar>, SWE tag 276
<swe:viewlink>, SWE tag 276
base 86
Edit 86
Edit List 87
New 86
Query 87

Application_Navigate event handler 438
Application_PreNavigate event handler 438
Application_Start event handler 438
Application Deployment Manager (ADM)

367
ADM Batch Processor server component

502
Administrative data (D) 502
administrative data, data type 501
architecture 502

files (F) 502
file types 501
List of Values (LOV) 502
overview 501
package 502
Repository data (R) 502
repository data, data type 501
Siebel Management Agent 503
Siebel Management Server 503
Siebel Web Server Extension (SWSE) 501

Application Deployment Manager (ADM),
file types

BI Publisher Report Templates and related
files (.rtf and others) 501

Cascading style sheets (.css) 501
Siebel Repository File (.srf) 501
Siebel Web Template (.swt) 501

application event handlers
about 438
Application_Navigate 438
Application_PreNavigate 438
Application_Start 438

application logo
replacing 290, 291

application menu items
configuring 304, 305

ApplicationName parameter 322
application object methods, Siebel Object

interfaces
ActiveBusObject() method 450
ActiveViewName() method 450
cons 436
GetBusObject("Name") 450
GetProfileAttr("Name") 451
GetService("Name") 451
LookupMessage("Category","Name",argum

ents) 451
pros 436
RaiseError("Name","Value") 451
RaiseErrorText("Text") 451
SetProfileAttr("Name","Value") 451
TheApplication() method 450
Trace("Text") 451
TraceOn("File","Type","Selection") 451

application programming interface (API)
444

ApplicationStart event handler 488

[526]

Apply functionality 152
arguments

about 301
and business service methods, declaring

466, 467
Asset Number field 21
associate applet 108
associate list applets

and multi value group (MVG), creating
226-228

creating 229
assosiate applet

configuring 108
Asynchronous Server Requests, business

service 315
Auto Primary property 219

B
Base Object Type property 329
bath scripts, using

strconv.bat file, using 75, 76
symbolic strings, creating automatically 74

BCInvokeMethod method 396
BCNextRecord method 396, 397
BC Read Only Field, user property name

247
binary, process properties 350
Bind Task View command 417
bitmap category, object type 33
bitmaps

configuring 287, 288
bookmarks, docking window 13
bounded property 197
browser JavaScript 434
browser script

about 473
adding, to object definition 475-477
business service methods, invoking 484-486
changes, monitoring on specific field 477
confirmation dialog, displaying to end user

479
control properties, changing 478, 479
date calculations, performing 478
debugging 480
end user response, interpreting 479
error messages, displaying 479

example 475
exception handling 477
operation flow, cancelling 480
operation flow, continuing 480
requisites 474
Siebel tools, preparing for 474
testing 480
variable, declaring 477, 478
writing 475

browser security settings
adjusting 509, 510

BusComp() method 452
BusComp_DeleteRecord event handler 439
BusComp_NewRecord event handler 439
BusComp_PreDeleteRecord event handler

439
BusComp_PreInvokeMethod event handler

439
BusComp_PreNewRecord event handler

439
BusComp_PreQuery event handler 439
BusComp_PreWriteRecord event handler

439
BusComp_SetFieldValue event handler 439
BusComp View Mode, child object type 127
business component behavior, controlling

about 147
business component, properties 147, 149

business component event handlers
BusComp_DeleteRecord 439
BusComp_NewRecord 439
BusComp_PreDeleteRecord 439
BusComp_PreInvokeMethod 439
BusComp_PreNewRecord 439
BusComp_PreQuery 439
BusComp_PreWriteRecord 439
BusComp_SetFieldValue 439

business component methods, Siebel Object
interfaces

ActivateField("Field") 453
ActivateMultipleFields("PropertySet") 453
ClearToQuery() method 453
cons 437
DeleteRecord() method 456
ExecuteQuery(Mode) method 454
ExecuteQuery2(Mode,Flag) method 454
FirstRecord() method 455

[527]

GetFieldValue("Field") 455
GetFormattedFieldValue("Field") 455
GetMVGBusComp("Field") 456
GetPickListBusComp("Field") 456
LastRecord() method 455
NewRecord(Indicator) method 456
NextRecord() method 455
PreviousRecord() method 455
pros 437
SetFieldValue("Field") 455
SetFormattedFieldValue("Field") 455
SetSearchExpr("Field") 453
SetSearchSpec("Field") 453
SetSortSpec("Field") 453
SetViewMode(Mode) method 454
WriteRecord() method 456

Business Component Name 396
Business Component property 197, 262
Business Components (BC)

about 125, 126, 396
and field user properties 246-249
and SQL 128-130
custom child business component, creating

185-191
definitions, visualizing 128
field user properties 255
name method user property 249-253
On Field Update Set user property 253-255

Business Component Server Script,
child object type 127

Business Component User Prop,
child object type 127

business component view modes
about 234, 235
access control configuration, testing 239,

240
defining 238, 239

business component view modes, properties
owner type 234
reserved name 234
visibility field 234

business intelligence (BI) 104
business layer 326
business layer, Siebel Repository metadata

about 19

and data layer objects, relationships 22, 23
business components 19, 21
business object 22
fields 19, 21
joins 19, 21
links 21

business object
about 179-181
features 181

business object methods, Siebel Object
interfaces

GetBusComp("Name") 456
business objects

configuring 193, 194
business service 301
business service event handlers

Service_InvokeMethod 440
Service_PreCanInvokeMethod 440
Service_PreInvokeMethod 440

business service methods
and arguments, declaring 466, 467
invoking, from browser scripts 484-486
invoking, from server 484-486

business service methods, Siebel Object
interfaces

cons 437
pros 437

Business Service Method type 310
business service object methods, Siebel

Object interfaces
InvokeMethod("Method", InputPS,

OutputPS) 457
Business Service property 302
business services

about 309-311
invocation, techniques 314
method, invoking from runtime event 321
methods, invoking 311-313
preconfigured business services 314-316
runtime events 321-323
testing 317-320

business service steps
workflow process, creating with 358-362

BusObject() method 452
buttons and menu items 372

[528]

C
calculated fields

creating 132
calculated property 137
Calculated Value property 134, 137
calculation expression

using, to create e-mail id 133, 134
using, to show number of related records

134, 135
Cancel button 428
CanInvokeMethod 256
canvas/flowchart editors 14
Caption - String Override property 75
cascade delete property 184
cascading style sheet (CSS) 285
Cascading style sheets (.css), 501
Catalog Views 235
catch(e) block 465
catch block 448, 466
CCFrameBanner.swt file 275
CCListBody 85
CCListHeader 85
Change All button 320
Change button 320
Chapter property 417
chart applets

building block, Chart Elements 104
Chart object type 105
Chart object type, properties 105
configuring 103, 104

Chart Applet Wizard 106
CheckActivity method 441
child business component

creating, on 1:M extension table 184
creating, on standalone table 191
custom child business component, creating

185-191
child business component property 183
class (CSSBCTaskTransient) 406
class property 147
ClearToQuery() function 464
ClearToQuery() method 453
ClientBusinessService4 user property 486
ClientBusinessServiceN application user

property 486
cloning 148

column, properties
default 153
foreign key table 153
length 153
nullable 153
physical type 153
precision 153
primary key 153
required 153
scale 153
type 153

column property 137
command objects

configuring 301, 302
Comments property 163
Compare To dropdown box 377
CONFIG_FILE parameter 75
configuration context toolbar 11
confirm() method 479
confirmation dialog, browser script

displaying, to end user 479
CONFLICT_ID, system column 155
ConnectString parameter 38
constrained dynamic pick list

exploring 212
constrained pick lists 211
ContactBO variable 464
Contact Id field 129
Container Web Page 284
content object, object type 33
Control Locale record 74
control properties, browser script

changing 478, 479
controls/columns, docking window 12
Controls/Columns docking window 92
control user properties

about 257
list Column user properties 257
view user properties 257

Copy() method 458
Copy of Order Entry - Order Form Applet

(Sales) 408
Copy of Quote Form Applet 408
CREATED, system column 154
CREATED_BY, system column 155
CreateEmptyPropSet method 398

[529]

CSSBCAccountSIS class 245
Ctrl+S keyboard shortcut 423
Currency Field, user property name 247
custom business service

business service definition, creating 460,
461

creating 460
custom functions, creating 461-463
example code 463
exceptions, handling 465, 466
person information retrieving, with eScript

460
query, executing 464
query result, verifying 464
values, reading from business component

fields 464
variables declarations 463, 464

custom columns
creating 165

customer name field 138
customer service number (CSN) 400
custom indexes

creating 166, 167
customization 278
custom schema changes

considerations 159-161
custom stand-alone table

creating 167-169
custom tables

creating 167
custom stand-alone table, creating 167-169

D
Database Server Utilities (dbsrvr) 492
data definition language (DDL) script 160
data layer, Siebel Repository metadata

about 17
columns 17, 18
indexes 18
interface tables 18
object type relationships 18, 19
tables 17, 18

data map
about 354
creating 355-358

Data Mapper 329

DataSource parameter 76
Data Type Definition (DTD) files 328
data types, Application Deployment

Manager (ADM)
administrative data 501
repository data 501

Data Validation Manager, business service
315

date (intersection), table type 152
date (private), table type 152
date (public), table type 152
date, process properties 350
date calculations, browser script

performing 478
DB_LAST_UPD, system column 155
DB_LAST_UPD_SRC, system column 155
dCurrentDate variable 477
debugging

browser script 480
extracting, genbscript utility used 481, 482

debug toolbar 11
debug windows, docking window 13
Deep Copy, user property name 248
Deep Copy/Delete Link, user property name

248
Deep Delete, user property name 248
default, column property 153
Default Applet Method 256
Default Focus... 256
default switch 461
Defer Write Record property 423
delete method 338
delete operation 379
DeleteRecord() method 456
Demo Users Reference document

URL 514
descriptor file 500
Destination Business Component property

219
Destination Drilldown Object property 262
Destination Field property 184, 262
Destination Link property 219
dev2prod (development to production) 491
developer tasks

automating, command line options used
56, 57

[530]

development process
about 42
checking in 51, 52
checking out 43-45
debugging 49-51
existing object definitions, copying 47
existing object definitions, new version

creating 47
modification techniques 47, 48
new object wizards 46
new records, creating 47
object definitions, compiling 49
object definitions, creating 45
object definitions, validating 48
testing 49-51

dInputDate variable 477
Disable Automatic Trailing Wildcard Field

List, user property name 248
Disable Cancel property 417
Disable Pause property 417
Disable Previous property 417
DisableSearch property 255
DisableSort property 255
disable sort property 137
display name property 302, 418
display value column 205
DockConnString parameter 38
docking window 12
docking windows, Siebel Tools user

interface
applets 12
bookmarks 13
controls/columns 12
debug windows 13
multi value property window 13
object explorer 12
palettes 12
properties 12
web templates window 13

Document Object Model (DOM) 434, 478
DontEncodeData 431
downloading

Oracle Siebel documentation 508
drilldown hyperlinks

creating, on form applets 263-265
Drilldown Object child type 260

Drilldown Object definition
visibility settings 241

drilldown objects
about 259-261
types 262

drilldown objects types
Business Component property 262
Destination Field property 262
Hyperlink Field property 262
Sequence property 262
Source Field property 262
View property 262
Visibility Type property 262

DTYPE_DATE 146
dynamic applet toggle 270, 271
dynamic drilldown 260
Dynamic Drilldown Destination type 262
Dynamic Drilldown Destination type,

properties
Field property 262
Sequence property 262
Value property 262

dynamic drilldowns
creating 265
list applet, destinations 265, 266

dynamic link library (DLL) 434
dynamic pick lists

about 198, 199
creating 206, 207

E
EAI Data Transformation Engine (DTE)

business service 362
EAI Data Transformation Engine, business

service 315
EAI Data Transformation Engine business

service 329, 354
EAI file transport

<Value> 400
AppendToFile 400
FileName 400

EAI File Transport, business service 315
EAI Siebel Adapter 326
EAI Siebel Adapter, business service 315,

326

[531]

EAI XML Converter, business service 315
EAI XML write to file

about 400
WriteEAIMsg method 398
WritePropSet method 398
WriteXMLHier method 398

EAI XSLT Service, business service 315
Echo method 395
ECMA-262

language specification, URL 444
ECMA-262 standard 434
Edit | Change Records..., menu item 10
Edit | Copy Record, menu item 10
Edit | Delete Record, menu item 10
Edit | New Record, menu item 10
editor canvas 352
editors/viewers, Siebel Tools user interface

canvas/flowchart editors 14
menu editor 14
object list editor 14
screen view sequence editor 14
script editors 14
view details 14
view editor 14
view relationships 14
view web hierarchy 14
web applet editor 14

edit toolbar 11
Eliza business service 312, 313
Encrypt... property 255
end user response, browser script

interpreting 479
Enterprise Application Integration (EAI)

310, 314
Enterprise Application Integration (EAI)

connectors 325
enterprise application integration (EAI)

interface 28
Enterprise Integration Manager (EIM) 158
entity relationship diagram, object type 33
entity relationship diagrams (ERDs) 125
error exception

creating, stop step used 385-387
error exception connectors

about 384
using 384

error messages, browser script
displaying 479

error processes
about 384
using 387

Error Web Page 284
eScript 434
eval() function 478
event handling

in Siebel application 295-297
exception

handling 448
exception handling, in workflow processes

about 383
error exception connectors 384
error exception connectors, using 384
error exception creating, stop step used

385-387
error process 384
error processes, using 387
stop steps, using 385

Exception object 449
execute method 339
ExecuteQuery() method 490
ExecuteQuery(ForwardOnly) 464
ExecuteQuery(Mode) method 454
ExecuteQuery2() method 454
ExecuteQuery2(Mode,Flag) method 454
EXISTS() function 218
export repository 495
expression 424
Expression property 120
extension (Siebel), table type 152
extension, table type 152
extension tables

1:M extension tables, using 164
new field based, creating on existing 1:1

extension table column 163, 164
using 161, 162

external, table type 153
external integration objects 328, 329
External Name property 328
external source control systems

integrating 55

[532]

F
field, child object type 126
FieldDependency, user property 342
field level behavior

All Hardware (AHA) 138
controlling 137
field validation, implementing 139, 140
post-default values, syntax 145
required field, creating 140
siebel query language 141-144
siebel query language, using 146
translatable validation messages, creating

138
Field property 91, 262
Field Read Only Field

name, user property name 248
field user properties

about 246
DisableSearch property 255
DisableSort property 255
Display Mask Char property 255
Encrypt... property 255
Required property 255
Text Length Override property 255

File | Export..., menu item 10
File | New Object..., menu item 10
File | Save, menu item 10
files (F) 502
finally block 466
FirstRecord() function 464
FirstRecord() method 455
force active property 137
force case property 137
foreign key table, column property 153
for loop 447
form applets

about 87
business component field, modifying 91, 92
caption text changing, symbolic strings

used 90, 91
controls, appearing in More mode 96
controls copying, Compare Objects window

used 94, 95
creating 87-97
data, displaying in title 96
drilldown hyperlinks, creating 263-265

existing applet, copying 90
existing control, moving to different loca-

tion 92
existing controls, deleting 92
form sections, creating 93
multiple controls, aligning 93
multiple controls, formatting 93
new applet, compiling 97
new controls, creating 92, 93
properties, setting for data operation 96, 97
Show More/Show Less button, adding 95
standard buttons, adding 96
tab order, setting 94

format toolbar 11
Forward Button Type property 418
Forward Only 396
founded date field 138
From First 396
function keyword 447
Functions in Calculation Expressions sec-

tion 142

G
gap 459
genbscript utility 495

about 481
used, for extracting browser script 481, 482

GetBusComp("Name") 456
GetBusObject("Name") 450
GetBusObject() function 463
GetChild(index) method 458
GetChildType method 398
GetFieldValue("Field") 455
GetFormattedFieldValue("Field") 455
GetMVGBusComp("Field") 456
GetNumBCRows() function 134
GetNumBCRows(business object, business

component, search expression, view
mode) function 144

getPersonInfo() function 461
getPersonInfo() function block 461
getPersonInfo method 466, 469, 484
GetPickListBusComp("Field") 456
GetProfileAttr("Name") 451
GetProperty("Name") 457
GetProperty method 398

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[533]

GetService("Name") 451
GetService() application method 485
GetType() method 457
GetValue() method 457

H
Help | Contents, menu item 11
hierarchical pick lists 211
hierarchical static pick lists

exploring 213, 214
hierarchy, process properties 350
High-Interactivity (HI) 403
history toolbar 11
HTML bitmap property 302
HTML disabled bitmap property 302
HTML popup dimension property 302
Hyperlink Field property 262
Hypertext Markup Language (HTML) 273

I
icon map

about 33, 288
using 288, 289

if block 463, 464, 477
IfNull(expression1,expression2) function

143
Ignore Bounded Picklist, user property 342
IIf() function 420
IIf(expression,return1,return2) function 142
importing

administrative data files 517
Siebel Tools archive files (SIF) 515, 516

import repository 495
indexes 156, 157
InputPS argument 457
InsertChildAt() method 457
InsertChildAt(PropertySet, index) method

457
Insert method 330, 337
insert operation 378
installing

Siebel CRM client software 510
Siebel Mobile Web Client 511
Siebel sample database 512
Siebel tools 513

integration component (IC) 342

integration component fields (ICF) 342
integration component keys 329

about 329
defining 334, 336
inbound direction 329
outbound direction 329

integration layer, Siebel Repository
metadata

automation layer 29
business services 29, 30
commands 31
external integration objects 29
internal integration objects 27, 28
tasks 31
workflow processes 30, 31

Integration Manager (EIM) module 18
integration object, process properties 350
integration objects

about 325-327
advanced settings 342, 343
component keys 329
creating 354, 355
external integration objects 327-329
internal integration objects 327-329
structure 327
testing 336-341

integration objects (IO) 342
inter child column property 183
interface, table type 153
Internal Account Interface integration

object 328
internal integration objects

about 327
creating 330-332
unneeded integration component fields,

deactivating 332-334
Internet Community 521
inter parent column property 183
intersection table

creating 222, 223
inter table property 183
INVOKE 251
INVOKEALL 251
InvokeMethod("Method",Arguments) 452
InvokeMethod("Method", InputPS,

OutputPS) 457
InvokeMethod() method 485, 486

[534]

INVOKESEL 251
INVOKESVC 252
INVOKESVCALL 253
INVOKESVCSEL 253
IS NULL operator 420
iterations

on child record set 389-394

J
Java Runtime Environment (JRE) 506
JavaScript (.js) file 436
join

creating 131
join, child object type 126
Join object 129
join property 137
Julian calendar function 144

L
Label 93
language-independent code column 205
language independent code (LIC) 342
language name column 205
LAST_UPD, system column 155
LAST_UPD_BY, system column 155
LastRecord() method 455
Len(text) function 143
length, column property 153
link object

about 182, 183
cascade delete property 184
child business component property 183
destination field property 184
inter child column property 183
inter parent column property 183
inter table property 183
parent business component property 183
source field property 184

Link object definitions
visibility settings 241

links
creating 192

list applet
about 98
Base layout template, editing 101, 102
creating 99

creating, new object wizard used 99-101
dynamic drill down destinations 265, 266
Query layout template, editing 102, 103
static drilldown from 263
tasks 98

list column user properties 257
List of Values (LOV) 502
List of Values (LOV) table

about 203
administering 203-205
columns 205

List of Values (LOV) table, columns
active column 205
display value column 205
language-independent code column 205
language name column 205
slow, high column 205
multilingual column 205
order column 205
parent LIC column 205
replication levels column 205
translate column 205
type column 205

list toolbar 11
LMU 80
local database

application, verifying 172, 173
client configuration files, settings verifying

in 37, 38
downloading 38, 39
initializing 36-39
network connectivity, establishing 37
schema changes, applying 169
Siebel tools apply feature 170-172
synchronize schema definition process, us-

ing 174-177
LocalDbODBCDataSource ([Siebel] section)

38
Locale Management Utility. See LMU
logical architecture, Siebel applications 32
Login Web Page 284
Logoff Acknowledgement Web Page 284
LookupMessage("Category","Name",argum

ents) 451
LookupMessage() application method 484
LookupMessage() method 484
LookupMessage() server script method 482

[535]

LookupValue() function 134, 299
LookupValue(LOV_Type, Language

Independent Code) function 143
loops 389
low, high column 205

M
M:M link

creating 223
manual applet toggle 268, 269
many-to-many (M:M) 126
MapName 360
memory leak 449
menu bar, Siebel Tools user interface

about 10
Edit | Change Records... menu item 10
Edit | Copy Record menu item 10
Edit | Delete Record menu item 10
Edit | New Record menu item 10
File | Export... menu item 10
File | New Object... menu item 10
File | Save menu item 10
Help | Contents menu item 11
Tools | Check In... menu item 10
Tools | Check Out... menu item 10
Tools | Compare Objects... menu item 11
Tools | Compile Projects... menu item 10
Tools | Import from Archive... menu item

11
Tools | Search Repository menu item 11
Tools | Utilities | Compare SRFs menu

item 11
View | Options... menu item 10
View | Toolbars | ... menu item 10
View | Windows | ... menu item 10

menu editor 14
message categories

about 78
example message, creating 79

message category, object type 33
message variable 477
method argument property 302
method invocation

controlling 297, 298
method name 250

MethodName input argument 461
method property 302
methods 301
MODIFICATION_NUM, system column

155
MsgLanguageCode process property 395
multi-instance user properties 246
Multi-Value-Group. See MVG applet
multilingual column 205
Multiple Instances column 246
Multi Valued property 220
multi value fields

about 215-220
creating, MVG wizard used 224-226
primary concept 218
repository object types 218

Multi Value Fields (MVF) 126
multi value fields, creating

about 222
MVG wizard used 224-226
new intersection table, creating 222, 223
new M
new MM link, creating 223, 224

multi value fields, repository object types
multi value field 220
Multi Value Group (MVG) and Association

List applets 220
multi value link 219
relationship 220, 221

Multi Value Group (MVG)
about 217
and associate list applets, creating 226-228
and associate list applets 220

multi value link
about 219
Auto Primary property 219
Destination Business Component property

219
Destination Link property 219
object type, properties 219
Popup Update Only property 219
Primary Id Field property 219

Multi Value Link (MVL), child object type
126

Multi Value Property Window (MVPW)
352, 358, 390, 405

[536]

multi value property window, docking
window 13

MVG applet
Account Team Mvg Applet 108
configuring 108
Team Member Assoc Applet 108

MVG controls
creating 229

My Oracle Support
about 521
URL 521

N
Name() function 478
Named Method

New Quote user property 347
Named Method, user property name 248
Named Method N: methodname 256
Named Method user property 314
named method user property, business

component
about 249
action parameters 250
action type 250
method name 250
name field 250
N keyword 250
object 250
syntax 250
value field 250

Name property 245
Navigate menu 303
NewPropertySet() method 451, 485
NewQuote method 347
NewRecord() method 456
NewRecord(Indicator) method 456
new static pick list

creating, for existing field 200, 201
new View

registering 122
testing 122-124

New View wizard
using, for creating Views 118

NextRecord() method 455
Next Record button 180
NextRecord operation 380

N keyword 250
NoDataHide 256
NoDelete, user property 342
NoDelete Field, user property name 248
no delete property 147
NoInsert, user property 342
no insert property 147
no merge property 147
NoQuery, user property 342
NoSynchronize, user property 342
NoUpdate, user property 342
no update property 147
nullable, column property 153
number, process properties 350

O
oApplet variable 477
object 250 40, 41
object definitions

archived object definitions, importing 54
archiving 53
comparing 54
getting, from server database 39, 40

object explorer, docking window 12
Object Explorer tab 244
object list editor 14
oControl variable 478
ODBC data source (DSN) 496
On Condition Set Field Value, user property

name 249
One-to-many (1:M) extension tables 164
one-to-many (1: M) 126
On Field Update Invoke, user property

name 249
On Field Update Set, user property name

249
On Field Update Set user property 253-255
operation flow, browser script

cancelling 480
continuing 480

Options… command 474
Oracle E-Delivery 506
Oracle forums 520
Oracle Partner Network

URL 519

[537]

Oracle Siebel CRM software installer
browser security settings, adjusting 509,

510
downloading 506
extracting 506, 508, 509
hardware, requisites 505, 506
installation archives, downloading 507
installation archives, extracting 508
license agreement 507
Oracle E-Delivery, registering at 506
Oracle Siebel documentation, downloading

508
third-party software, requisites 506

Oracle Siebel Documentation
downloading 508
Integration Platform Technologies:URL 343

Oracle Technology Network
URL 519

Oracle University
URL 519

order column 205
Order Entry 27
Outbound Communications Manager, busi-

ness service 316
Output Arguments tab 391
OutputIntObjectName 359
OutputMessage property 313
OutputPS argument 457
owner delete property 147
owner type property 234

P
palettes window 352
PAR_ROW_ID, system column 155
parent business component property 183
ParentFieldValue function 143
Parent Integration Component property 328
parent LIC column 205
Parent Read Only Field, user property name

249
Password parameter 76
performance

profiling 488-490
PersonData property set 465
physical type, column property 153
pick applets

configuring 107

creating 208-210
FINCORP Deal Account Pick Applet,

screenshot 107
pick list, object type 33
PICKLIST, user property 342
Pick List object definitions

visibility settings 240, 241
picklist object type

about 197
bounded property 197
business component property 197
search specification 197
sort specification 197
static property 197
type field 197
type value 197

picklist property 138
pick lists

about 195
configuration, testing 210, 211
constrained dynamic pick list, exploring

212
constrained pick lists 211
dynamic pick lists 198, 199
dynamic pick lists, creating 206, 207
existing pick lists, reusing 207, 208
hierarchical pick lists 211
hierarchical static pick lists, exploring 213,

214
List of Values table, administering 203-205
new static pick list, creating for existing

field 200, 201
object definitions, verifying 202, 203
pick applets, creating 208-210
Picklist object type 197
pick maps 198
repository object types 199
static pick lists 196

Pick List wizard
object definitions, verifying 202, 203

pick maps 198
playbar applets 406
popup applet 301
Popup Update Only property 219
post default value property 137
precision, column property 153
PREDEFAULT, user property 342

[538]

pre default value property 137
presentation layer, Siebel Repository meta-

data
and business layer objects, relationships 26,

27
applets 24
applications 25
menus 26
screen 25
toolbars 26
views 24

PreviousRecord() method 455
Previous Record button 180
PrevRecord operation 380
PreWriteRecord event handler 468
Price List field 422
Primary Id Field property 219
primary key, column property 153
Primary Revenue Close Date field 477
PrimaryRowId 359
PRM ANI utility service

about 397
CreateEmptyPropSet method 398
GetChildType method 398
GetProperty method 398
SetChildType method 398
SetProperty method 398

PRM ANI Utility Service, business service
316

problem property 320
process properties, types

binary 350
date 350
hierarchy 350
integration object 350
number 350
string 350

project
definition, creating in local developer data-

base 40
project, object type 33
properties, docking window 12
properties, View object type

Add To History 114
Admin Mode Flag 114
Business Object 114

Default Applet Focus 114
Thread Applet 114
Thread Field 114
Thread Title 114
Visibility Applet 114
Visibility Applet Type 114

properties window 352
property set

about 311
structure 311

property set object methods, Siebel Object
interfaces

AddChild(PropertySet) method 457
Copy() method 458
GetChild(index) method 458
GetProperty(457
GetType() method 457
GetValue() method 457
InsertChildAt(PropertySet, index) method

457
SetProperty(457
SetType(457
SetValue(457

publish functionality 367

Q
QueryBiDirectional operation 380
query method 336, 339
query operation 379
query page method 337

R
RaiseError("Name","Value") 451
RaiseError() method 482, 484
RaiseError() server script method 482
RaiseErrorText("Text") 451
RaiseErrorText() function 449, 484
RaiseErrorText application function 465
RaiseErrorText function 465
Read CSV File, business service 316
read only property 137
Recipient ..., user property name 249
Recursive Link, user property name 248
red border 93

[539]

repimexp command line utility 496
repimexp utility 496, 497
replication levels column 205
repository, table type 153
repository data

about 501
exporting 495, 496
importing 495, 496
repository objects, exporting 498

Repository data (R) 502
Repository Merge process 57
repository metadata 8
repository migration

about 491
Siebel Database Configuration Wizard,

invoking 492-495
tasks 492

repository migration, tasks
export 492
import 492
rename 492
synchronize 492
update 492

repository object definitions
for Siebel Access Control 236

repository object types, pick lists 199
required, column property 153
Required property 255
required property 137, 188
reserved name property 234
response variable 477
Retain Applet Search Spec property 418
Retain Task Search Spec property 418
Retain User Search Spec property 418
return() function 480
returncode variable 477
return keyword 448
return statement 448
ROW_ID, system column 154
ROW_ID column 18
ROW_ID system 17
Row Id 396
Row Set Transformation Toolkit, business

service 316
RunProcess method 347, 485
runtime events 371

S
scale, column property 153
schema changes

applying, to local database 169
applying, to server database 169

schema definition 28
Screens

about 114-116
Administration - Data Validation screen

115
Aggregate categories, level 115
Aggregate views, level 115
Detail categories, level 115
Detail views, level 115
graphic illustration 115
link bar 116
Screen View Sequence Editor 116
View, adding to 121
view, adding to 121
view bar 116

screen view sequence editor 14
ScriptAssist popup 445
ScriptAssist section

Auto Indent setting 442
Deduce Types setting 443
Enable Auto Complete setting 442
Enable Favorites setting 442
Enable Method Listing setting 442
Enable Warnings setting 443
Fix And Go setting 442

script debugger 443
script editor

about 440
CheckActivity method 441
opening 441
ScriptAssist section 442
ST eScript engine 441
strongly defined data types 441

script editors 14
script performance profiler 443, 489
scripts

about 372
breakpoints, setting 468
code errors, correcting 471
debugging, workflow 467

[540]

object definition, compiling 467
script code, invoking from application

468-471
Siebel application, running in debug mode

468
testing, workflow 467

script tracing 488
Search Specification 396
search specification 197
search specification property 147
SELECT statement 129
select statement 218
Sequence property 262
server

business service methods, invoking 484-486
server database

object definitions, getting 39, 40
server script

and browser scripts 435, 436
service-oriented architectures (SOA) 30, 314
Service_InvokeMethod event handler 440
Service_PreCanInvokeMethod event

handler 440
Service_PreInvokeMethod event handler

440
Service Request business component 20
SET 251
SetChildType method 398
SetFieldValue("Field","Value") 45
SetFieldValue() function 449
SetFormattedFieldValue(455
SetProfileAttr("Name","Value") 451
SetProperty("Name","Value") 457
SetProperty() function 479
SetProperty() method 485
SetProperty method 398
SetSearchExpr("Expression") 453
SetSearchExpr() 453
SetSearchSpec("Field","Value") 453
SetSearchSpec("Id",PersonId) 464
SetSearchSpec() 453
SetSortSpec("SortSpec") 453
SetType("TypeValue") 457
SetType() function 465
SetValue("Value") 457
SetViewMode(AllView) function 464
SetViewMode(Mode) method 454

show popup property 302
Shuttle Applet 108
shuttle buttons 108
SIA BC utility service

about 396
Business Component Name 396
Forward Only 396
From First 396
Row Id 396
Search Specification 396

SIA BC Utility Service, business service 316
Siebel

applications, localizing 80
Screens 114
Views 112

siebel.exe 435
Siebel Access Control

about 231-233
business component view mode objects,

properties 234
case study example 237, 238
object types 240
repository object definitions 236
view peoperties, configuring 237
view properties 233

Siebel Access Control, object types
Drilldown Object definitions, visibility

settings 241
Link object definitions, visibility settings

241
Pick List object definitions, visibility

settings 240, 241
Siebel applications

event handling 295-297
look and feel customizing, considerations

277, 278
method invocation, controlling 297, 298

Siebel Bookshelf 8, 520
Siebel Content Publishing Guide

URL 323
Siebel CRM

applet, types 84
view web templates 116

Siebel CRM and Oracle Business
Intelligence

authors blog on. URL 521

[541]

Siebel CRM client software
Demo Users Reference, using 514
installing 510
Siebel Mobile Web Client, installing 511
Siebel sample database, installing 512
Siebel tools, configuring 514
Siebel tools, installing 513

Siebel CRM project
getting trained 519
information, finding 520

Siebel CRM schema
extension tables 161

Siebel Developer's Reference document
URL 142

Siebel Developer's Reference guide
URL 245

Siebel development environment
building blocks 36

Siebel eScript language
about 443, 444
blocks 446-448
comments 446
functions 446, 448
variable, declaration 445, 446
variable, initialization 445, 446

Siebel event framework 293, 294
Siebel Industry Applications (SIA) 218, 260,

314, 396
Siebel Industry Applications (SIA) schema

17
Siebel installers

extracting 508, 509
Siebel Management Agent 503
Siebel Management Server 500, 503
SiebelMessage 360, 361
Siebel Mobile Web Client

installing 511
Siebel Object interfaces

about 450
applet object methods 452
application object methods 450, 451
business component methods 452-455
business object methods 456
business service object methods 457
property set object methods 457, 458

Siebel Object Interfaces Reference guide
URL 444

Siebel Object Manager 435
Siebel Operation Object Id process property

397
Siebel Operation step 389
Siebel Query Language syntax 130
Siebel Repository

searching 55
Siebel Repository File. See SRF
Siebel Repository File (.srf) 501
Siebel Repository File (SRF) 16, 37
Siebel Repository metadata

object types 33
Siebel Repository metadata, layers

automation layer 17, 29
business layer 17, 19
data layer 17
integration layer 17, 27
presentation layer 17, 23

Siebel Repository metadata, object types
bitmap category 33
content object 33
entity relationship diagram 33
icon map 33
message category 33
pick list 33
project 33
symbolic string 33
type 33
web page 33
web template 33
Workflow policy and assignment related

object types 33
Siebel sample database

installing 512
Siebel scripting

about 434
applet event handlers 438
application event handlers 438
Browser JavaScript 434
business component event handlers 439
business service event handlers 440
C++ and C# 434
cons 436, 437
eScript: 434
exception, handling 448
exception handling 449
Java 434

[542]

memory leak 449
need for 458, 460
pros 436, 437
script debugger 443
script editor 440
script editor, opening 441, 442
script performance profiler 443
server and browser scripts 437
server script and browser scripts 435, 436
Siebel eScript language 443, 444
Siebel Object interfaces 450
Siebel Object Manager 435
SiebelVB 434

Siebel Task UI
AHA Create Account Task View 414
AHA Create Order Task View 415
AHA Create Quote Task View 415
AHA Partner Query Task Applet 411, 412
AHA Partner Query Task View 413, 414
AHA Partner Query TBC 411
AHA Simple Order Form Applet 410
AHA Simple Quote Form Applet 409, 410
branches, configuring 423, 424
business process, supporting with 407, 408
business service steps, configuring 419, 420
creating, steps 408
decision steps, configuring 423, 424
new applet 409, 410
new business component field 409
new task applet 411, 412
new task view 413, 414
new transient business component 411
object types 406
Siebel Operation steps, configuring 420,

421, 423
task flow layout, creating 416, 417
task groups, creating 425, 426
task groups, using 425, 426
task object type 404, 405
tasks, creating 415, 416
task view steps, creating 417-419

Siebel Task UI, components
administrative views 403
task editor 403
task object type 404
task pane 404
task player 404

tools wizards 403
Siebel Tools

about 36
Applet Web Templates 86
configuring, to connect to sample database

514
installing 513
navigating in 15
properties 70
Web Template Explorer 85

Siebel Tools Apply feature 170-172
Siebel Tools archive files (.sif) 498
Siebel Tools archive files (SIF)

importing, steps 515, 516
Siebel Tools Language

setting 71
Siebel Tools Options

about 41, 42
Check In/Out tab 42
Database tab 42
Debug tab 42
General tab 42
Language Settings tab 42
List Views tab 42
Object Explorer tab 42
Scripting tab 42
Visualization tab 42
Web Template Editor tab 42

Siebel Tools user interface
about 8, 9
docking window 12, 13
editors 14, 15
menu bar 10, 11
status bar 15
title bar 9
toolbar 11

Siebel Universal Inbox 404
Siebel Upgrade Wizard 492
SiebelVB 434
Siebel Web Client

site map 115
Siebel Web Engine (SWE) 273
Siebel Web Server Extension (SWSE) 436,

495, 501
Siebel Web Template (.swt) 501
Siebel Web Template (SWT) 84, 273

[543]

Siebel workflow
about 345, 346
process editor 352-354
processes, creating 351, 352
processes, designing 351, 352
process properties 350, 351
step, types 349, 350

simulator toolbar 11
single value field

about 130
calculated fields, creating 132
creating 131, 132
data from joined tables, displaying 130
e-mail link creating, calculation expression

used 133
join, creating 131
new field, exposing in applet 135-137
number of related records showing,

calculation expression used 134, 135
Site Map button 26
Site Map command 293, 303
sortorder, user property 343
sortsequence, user property 343
sort specification 197
sort specification property 147
source field property 184, 262
Spell Checker, business service 316, 317
SQL

and business components 128-130
SRF 71
standalone table

child business component, creating 191
Standard-Interactivity (SI) 98
static drilldown 260
static drilldowns

creating 262
drilldown hyperlinks, creating on form

applets 263, 265
from list applet 263

static pick lists 196, 197
static property 197
status bar, Siebel Tools user interface 15
StatusObject 361
step types, Siebel workflow

Business Service 349
Connector 350
Decision Point 349

End 350
Error Exception 350
Siebel Operation 349
start 349
Stop 350
Sub Process 349
Task 349
User Interact 350
Wait 350

ST eScript engine 441
stop step

used, for creating error exception 385-387
using 385

string, process properties 350
style sheets

customizing 285-287
SubmitRequest method 319
sub processes 388
SWE tag 275
switch block 461
symbolic string, object type 33
Symbolic String Locale 483
symbolic strings

about 69-71
associating, with objects 73
automatic creation, batch scripts used 74
consolidating, strcons.bat file used 77
Contact Form Applet, object definitions 70
creating, manually 72, 73
creating, options 72
diagrammatic representation 70
generating, strconv.bat file used 75, 76

SymStrPrefix parameter 73
synchronize feature 334
synchronize method 338
synchronize schema definition process

174-177
Synchronous Server Requests, business

service 316
system columns

about 154
CONFLICT_ID 155
CREATED 154
CREATED_BY 155
DB_LAST_UPD 155
DB_LAST_UPD_SRC 155
LAST_UPD 155

[544]

LAST_UPD_BY 155
MODIFICATION_NUM 155
PAR_ROW_ID 155
ROW_ID 154

T
Tab key 94
table, types

about 152
data (extension) 152
data (intersection) 152
data (private) 152
data (public) 152
extension (Siebel) 152
external 153
interface 153
repository 153

table property 130, 147
table reports 158, 159
target property 302
task

activating 426
administering 426
creating 415, 416
debugging 428
publishing 426
task flow layout, creating 416
task view steps, configuring 417
testing 427, 428

task applets 406, 408
task chapter 405
task editor 31, 403
task groups 406
task pane 404
task player 404
task property 404, 424
task step 405
Task UI 31
Task User Interface (UI) 403
task views 406, 408
TEST_LOCATION parameter 75, 76
testing

browser script 480
Text Length Override property 255
theApplication().SWEAlert(); function 479
theApplication() function 478, 485, 487

theApplication() method 486
thread bar

configuring 267
configuring, case study example 268

throw(message); statement 484
throw function 465
throw statement 465
Timestamp() function 142
title bar, Siebel Tools user interface 9
Today() function 142, 391, 392
toggle applets

configuring 268
dynamic applet toggle 270, 271
manual applet toggle 268, 269

toolbar, Siebel Tools user interface
configuration context toolbar 11
debug toolbar 11
edit toolbar 11
format toolbar 11
history toolbar 11
list toolbar 11
simulator toolbar 11
WF/task editor toolbar 11

toolbar buttons
configuring 305

TOOLS_INSTALL parameter 75
Tools | Check In..., menu item 10
Tools | Check Out..., menu item 10
Tools | Compare Objects..., menu item 11
Tools | Compile Projects..., menu item 10
Tools | Import from Archive..., menu item

11
Tools | Search Repository, menu item 11
Tools | Utilities | Compare SRFs, menu

item 11
Tools | Utilities | Export View Previews

command 120
tools wizards 403
ToString() function 447
toString() function 465
Trace("Text") 451
TraceOn("File","Type","Selection") 451
TraceOn() method 488
tracing

implementing, on script level 487, 488
script tracing 488

[545]

translatable messages
using 482-484

translate column 205
tree applets

component, Tree object type 106
configuring 106, 107
Contact Affiliations tree node 107
Pharma Account Tree Applet, screenshot

106
Tree Applet Wizard, using 107

try block 448, 466
type, column property 153
type, object type 33
type column 205
type field 186, 197
type property 137

U
Unified Messaging Service, business service

316
unit test 123
Universal Customer Master (UCM) 311
Universal Inbox, business service 316
update method 338
update operation 379
upsert method 338, 339
upsert operation 379
UsageTracking Enabled, system preference

323
UsageTracking LogFile Dir, system

preference 323
UsageTracking LogFile Format, system

preference 323
UsageTracking Log Time Period, system

preference 323
Usage Tracking Service, business service

316
user interface (UI)

about 83, 196
layer 58

user keys 157
Username parameter 76
user properties

about 243-245
for Account business component 244
multi-instance user properties 246

Name property 245
Value property 245

user property name, business component
Active Field 247
Active Value 247
Admin NoDelete 247
Admin NoUpdate 247
All Mode Sort 247
BC Read Only Field 247
Currency Field 247
Deep Copy 248
Deep Copy/Delete Link 248
Deep Delete 248
Disable Automatic Trailing Wildcard Field

List 248
Field Read Only Field:fieldname 248
Named Method 248
No Clear Field 248
NoDelete Field 248
On Condition Set Field Value 249
On Field Update Invoke 249
On Field Update Set 249
Parent Read Only Field 249
Recipient ... 249
Recursive Link 248
View Mode Sort 247

V
Validation Message-String Reference

property 138
validation property 138
Value property 245, 262
variable, browser script

declaring 477, 478
View | Options..., menu item 10
View | Toolbars | ..., menu item 10
View | Windows | ..., menu item 10
ViewActivated event 322
view details 14
View Details functionality 182
View Details window 128
View Detail template 116
View Editor 14, 117
ViewMode, user property 342
View Mode Sort, user property name 247

[546]

view properties
configuring 237, 238
for access control 233

View property 262
view relationships 14
Views

about 112
adding, to screen 121
applet mode property, setting 120
applets, adding to 119
basic view layout 117
creating 117
creating, New View wizard used 118
from business process perspective 112
from developer's perspective 113
modifying, in View Web Layout Editor 119
new View, registering 122
object type 113
responsibility 112
thread bar properties, setting 120

views and applets 326
view user properties 257
view web hierarchy 14
visibility 127
Visibility Applet Type property 238
visibility field property 234
Visibility Type property 262
visibility view type

All View 235
All ... across My Organizations 235
All ... across Organizations 235
Catalog Views 235
My Team's 235
My View 235

W
WebApplet_PreCanInvokeMethod event

handler 438
WebApplet_PreInvokeMethod event

handler 438
web applet editor 14
web pages

Acknowledgement Web Page 284
Container Web Page 284
customization, scenario 284
customizing 284

Error Web Page 284
Login Web Page 284
Logoff Acknowledgement Web Page 284
object type 33

web template
customization, external text editor used 278
custom web template, creating 282, 283
custom web template file, registering 283,

284
object type 33
prebuilt web template, customizing

279-282
web template definitions 276
Web Template File object definition 276
web template items 85
web templates window, docking window

13
WF/task editor toolbar 11
while block 463
Workflow Instance Monitor views 370
workflow policies 371
Workflow policy and assignment related

object types, object type 33
workflow process editor

editor canvas 352
Multi Value Property Window (MVPW)

352
palettes window 352
properties window 352

workflow processes
activating 366-369
applets, replacing on AHA Customer

Process Start View 380
creating 351, 352
creating, with business service steps

358-362
data map, creating 355-358
decision point, steps 377, 378
decision steps 374-377
designing 351, 352
exception handling 383, 384
instance data, viewing 370, 371
integration objects, creating 354, 355
invoking 371, 372
managing 366-370
Named Method: New Quote user property

347

[547]

NewQuote method 347
publishing 366-369
runtime events, defining 372-374
Siebel Operation, steps 378-380
Siebel operations 374-377
simulating 363-366
testing 363-366
workflow process editor 352, 353
exception handling 383, 384

workflow processes, invoking
buttons and menu items 372
runtime events 371
scripts 372
workflow policies 371

Workflow Process Manager, business
service 316, 349, 485

workflow techniques
about 394, 395
access hierarchical data accessing,

dot notation used 400, 401

EAI file transport 400
PRM ANI utility service 397
SIA BC utility service 396, 397
workflow utilities 395, 396

Workflow Utilities, business service 316
WriteEAIMsg method 398
WritePropSet method 398
WriteRecord() method 456
WriteXMLHier method 398

X
XLIFF 81
XML Gateway, business service 316
XML Language Interchange File format. See

XLIFF
XML Schema Definition (XSD) files 328

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Thank you for buying
Oracle Siebel CRM 8 Developer’s Handbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle GoldenGate 11g
Implementer’s guide
ISBN: 978-1-849682-00-8 Paperback: 280 pages

Design, install, and configure high-performance data
replication solutions using Oracle GoldenGate

1. The very first book on GoldenGate, focused on
design and performance tuning in enterprise-
wide environments

2. Exhaustive coverage and analysis of all aspects
of the GoldenGate software implementation,
including design, installation, and advanced
configuration

3. Migrate your data replication solution from
Oracle Streams to GoldenGate

Web 2.0 Solutions with Oracle
WebCenter 11g
ISBN: 978-1-847195-80-7 Paperback: 276 pages

Learn WebCenter 11g fundamentals and develop
real-world enterprise applications in an online work
environment

1. Create task-oriented, rich, interactive online
work environments with the help of this Oracle
WebCenter training tutorial

2. Accelerate the development of Enterprise 2.0
solutions by leveraging the Oracle tools

3. Apply the basic concepts of Enterprise 2.0 for
your business solutions by understanding them
completely

Please check www.PacktPub.com for information on our titles

The Oracle Universal Content
Management Handbook
ISBN: 978-1-849680-38-7 Paperback: 356 pages

Build, administer, and manage Oracle Stellent UCM
Solutions

1. Build a complete Oracle UCM system from
scratch and quickly learn to configure,
administer, and operate it efficiently

2. Match and exceed savings and efficiency
expectations, and avoid devastating data losses
with important tips and tricks

3. Migrate content like a pro—bring mountains of
new content in faster than you ever dreamed
possible

WS-BPEL 2.0 for SOA Composite
Applications with Oracle SOA
Suite 11g
ISBN: 978-1-847197-94-8 Paperback: 616 pages

Define, model, implement, and monitor real-world
BPEL business processes with SOA powered BPM

1. Develop BPEL and SOA composite solutions
with Oracle SOA Suite 11g

2. Efficiently automate business processes with
WS-BPEL 2.0 and develop SOA composite
applications

3. Get familiar with basic and advanced BPEL 2.0

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Preface
	Chapter 1: Siebel Tools and the Siebel Repository
	Siebel Tools user interface
	Title bar
	Menu bar
	Toolbar
	Docking windows
	Editors
	Status bar
	Navigating in Siebel Tools

	Siebel Repository metadata
	The data layer
	Tables and columns
	Interface tables
	Indexes
	Object type relationships in the Siebel data layer

	The business layer
	Business components, joins, and fields
	Links
	Business objects
	Relationships of business layer and data layer objects

	The presentation layer
	Applets and controls
	Views
	Screens
	Applications
	Menus and toolbars
	Relationships of presentation layer and business layer objects

	The integration layer
	Internal integration objects
	External integration objects

	The automation layer
	Business services
	Workflow processes
	Tasks
	Commands

	The logical architecture of Siebel applications
	Other object types

	Summary

	Chapter 2: Developer Tasks
	Initializing the local database
	Establishing network connectivity
	Verifying settings in the client configuration files
	Downloading and initializing the local database

	Getting object definitions from the server database
	Projects and objects
	Siebel Tools Options
	The development process
	Checking out
	Creating or modifying object definitions
	New Object Wizards
	Creating new records
	Copying existing object definitions
	Creating a new version of existing object definitions
	Modification techniques

	Validating object definitions
	Compiling object definitions
	Testing and debugging
	Checking in

	Local locking and prototyping
	Archiving object definitions
	Importing archived object definitions
	Comparing object definitions
	Searching the Siebel Repository
	Integrating external source control systems
	Automating developer tasks using command line options
	Keeping the upgrade in mind
	Summary

	Chapter 3: Case Study Introduction
	Background of All Hardware (AHA)
	Description of AHA's business processes
	Sales—Update Customer
	Sales—Retail Order
	Marketing—Campaign Tracking

	Requirements for AHA
	Sales—Update Customer
	Sales—Retail Order

	Summary

	Chapter 4: Symbolic Strings
	Understanding symbolic strings
	Creating and using symbolic strings
	Creating symbolic strings manually
	Associating symbolic strings with objects
	Using batch scripts to create symbolic strings automatically
	Using strconv.bat to generate symbolic strings
	Using strcons.bat to consolidate duplicate symbolic strings

	Using message categories
	Localizing Siebel applications
	Summary

	Chapter 5: Creating and Configuring Applets
	Understanding applets and web templates
	Applet web templates
	Applet web template types

	Creating and modifying form applets
	Case study example: creating a form applet
	Copying an existing applet
	Changing caption text using symbolic strings
	Changing the association to a business component field
	Deleting existing controls
	Moving an existing control to a different location
	Creating new controls
	Creating new form sections
	Formatting and aligning multiple controls
	Setting the tab order
	Copying controls from other applets using the compare objects window
	Adding a show more/show less button
	Setting controls to only appear in "more" mode
	Adding standard buttons
	Displaying data in the applet title
	Setting applet properties for data operations
	Compiling the new applet

	Creating and modifying list applets
	Case study example: creating a list applet
	Creating a new list applet using the Siebel Tools new object wizard
	Editing the base layout template
	Editing the query layout template

	Other applet types
	Configuring chart applets
	Configuring tree applets
	Configuring pick applets
	Configuring multi-value-group (MVG) and associate applets

	Summary

	Chapter 6: Views and Screens
	Understanding views and screens
	Understanding views
	Understanding screens
	View web templates

	Creating and modifying views
	Case study example: creating a new view
	Creating a view using the new view wizard
	Modifying a view in the view web layout editor
	Adding applets to a view in the view web layout editor
	Setting the applet mode property
	Setting the thread bar properties of a view

	Adding a view to a screen
	Registering a new view
	Testing a new view

	Summary

	Chapter 7: Business Components and Fields
	Understanding business components
	Visualizing business component definitions
	Business components and SQL

	Creating joins and fields
	Case study example: displaying data from joined tables
	Case study example: creating a join
	Case study example: creating single value fields
	Case study example: creating calculated fields
	Case study example: exposing a new field in an applet

	Controlling field level behavior
	Case study example: field properties
	Creating translatable validation messages
	Implementing field validation
	Case study example: creating a required field

	The Siebel Query Language
	Syntax for pre and post-default values
	Using the Siebel Query Language

	Controlling business component behavior
	Case study example: business component properties

	Summary

	Chapter 8: The Data Layer
	Understanding tables, columns, and indexes
	Understanding table types
	Understanding columns
	System columns

	Understanding indexes
	Understanding user keys
	Creating table reports

	Considerations for custom schema changes
	Using preconfigured extension tables
	Using 1:1 extension tables
	Case study example: creating a new field based on an existing 1:1 extension table column

	Using 1:M extension tables

	Creating custom columns
	Creating custom indexes
	Creating custom tables
	Case study example: creating a custom standalone table

	Applying schema changes to local and server databases
	Using the Siebel Tools "Apply" feature
	Verifying the application of local database changes
	Using the synchronize schema definition process

	Summary

	Chapter 9: Business Objects and Links
	Understanding business objects and links
	Link object definitions

	Creating a child business component on a 1:M extension table
	Case study example: creating a custom child business component
	Case study example: creating child business components on a standalone table

	Case study example: creating links
	Case study example: configuring business objects
	Summary

	Chapter 10: Pick Lists
	Understanding pick lists
	Static pick lists
	The picklist object type
	Pick maps
	Dynamic pick lists
	Repository object types for pick lists

	Case study example: creating a new static pick list for an existing field
	Verifying object definitions created by the pick list wizard

	Administering the list of values table
	Case study example: creating dynamic pick lists
	Case study example: reusing existing pick lists
	Case study example: creating pick applets
	Case study example: testing pick list configurations
	Constrained and hierarchical pick lists
	Exploring a constrained dynamic pick list
	Exploring hierarchical static pick lists

	Summary

	Chapter 11: Multi Value Fields
	Understanding multi value fields
	The "Primary" concept
	Repository object types behind multi value fields
	Multi value link
	Multi value field
	Multi value group (MVG) and association list applets
	Relationships between repository objects for multi value fields

	Case study example: creating multi value fields
	Creating a new intersection table
	Creating a new M:M link

	Creating multi value fields using the MVG wizard
	Case study example: creating multi value group (MVG) and association list applets
	Creating association list applets
	Creating MVG controls

	Summary

	Chapter 12: Configuring Access Control
	Understanding Siebel access control
	View properties for access control
	Business component view modes
	Repository object definitions for access control

	Configuring view properties for Siebel access control
	Case study example
	Registering the new view

	Defining business component view modes
	Testing the access control configuration

	Configuring additional object types for access control
	Visibility settings for pick list object definitions
	Visibility settings for link object definitions
	Visibility settings for drilldown object definitions

	Summary

	Chapter 13: User Properties
	Understanding user properties
	Multi-instance user properties

	Business component and field user properties
	Named method user property
	Case study example: using the On Field Update Set user property
	Field user properties

	Applet, control, and list column user properties
	Control user properties
	List column user properties

	View user properties
	Summary

	Chapter 14: Configuring Navigation
	Understanding drilldown objects
	Creating static drilldowns
	Case study example: static drilldown from list applet
	Creating drilldown hyperlinks on form applets

	Creating dynamic drilldowns
	Case study example: dynamic drilldown destinations for a list applet

	Configuring the thread bar
	Case study example: configuring the thread bar

	Configuring toggle applets
	Manual applet toggle
	Dynamic applet toggle

	Summary

	Chapter 15: Customizing the Look and Feel of Siebel Applications
	Understanding Siebel web templates
	Web template definitions

	Considerations for customizing the look and feel of Siebel applications
	Using an external text editor for web template customization
	Customizing pre-built web templates

	Creating custom Web Templates
	Registering a custom web template file

	Customizing web pages
	Customizing style sheets
	Configuring bitmaps and icon maps
	Case study example: using an icon map
	Case study example: replacing the application logo
	Summary

	Chapter 16: Menus and Buttons
	Understanding the Siebel event framework
	Event handling in Siebel applications
	Controlling method invocation

	Creating applet buttons
	Case study example: creating a custom applet button that invokes a workflow process

	Configuring command objects
	Accelerators
	Case study example: creating a command with an accelerator

	Case study example: configuring application menu items
	Case study example: configuring toolbar buttons
	Case study example: configuring applet menu items
	Summary

	Chapter 17: Business Services
	Understanding business services
	Invoking business service methods

	Preconfigured business services
	Testing business services
	Case study example: Invoking a business service method from a runtime event
	Runtime events

	Summary

	Chapter 18: Supporting Integration Interfaces
	Understanding integration objects
	Structure of integration objects
	Internal and external integration objects
	Integration component keys

	Creating internal integration objects
	Case study example: creating an internal integration object
	Deactivating unneeded integration component fields

	Defining integration component keys
	Testing integration objects
	Advanced settings for integration objects
	Summary

	Chapter 19: Siebel Workflow
	Understanding Siebel Workflow
	Siebel Workflow step types
	Workflow process properties

	Designing and creating workflow processes
	The workflow process editor
	Case study example: creating integration objects
	Case study example: creating a data map
	Case study example: creating a workflow process with business service steps

	Simulating and testing workflow processes
	Publishing, activating, and managing workflow processes
	Case study example: publishing and activating a workflow process
	Managing workflow processes
	Viewing workflow process instance data

	Invoking workflow processes
	Case study example: defining runtime events
	Case study example: decision steps and Siebel operations
	Understanding decision point steps
	Understanding Siebel Operation steps
	Case study example: replacing applets on the AHA Customer Process Start View

	Summary

	Chapter 20: Advanced Siebel Workflow Topics
	Exception handling in workflow processes
	Using error exception connectors
	Using stop steps
	Case study example: creating an error exception with a stop step
	Using error processes

	Subprocesses
	Loops and iterations
	Case study example: iterations on a child record set

	Advanced workflow techniques
	Workflow utilities
	SIA BC utility service
	PRM ANI Utility Service
	EAI XML Write to File
	EAI File Transport
	Case study example: using dot notation to access hierarchical data

	Summary

	Chapter 21: Siebel Task User Interface
	Understanding the Siebel Task UI
	Tasks and related repository objects

	Case study example: supporting a business process with Task UI
	Creating task applets and task views
	Preparation steps
	New business component field: AHA always generate quote flag
	New applet: AHA simple quote form applet
	New applet: AHA simple order form applet
	New transient business component: AHA partner query TBC
	New task applet: AHA partner query task applet
	New task view: AHA partner query task view
	New task view: AHA create account task view
	New task view: AHA create quote task view
	New task view: AHA create order task view

	Creating tasks
	Creating the task flow layout
	Configuring task view steps
	Configuring business service steps
	Configuring Siebel Operation steps
	Configuring decision steps and branches

	Creating and using task groups

	Publishing, activating, and administering tasks
	Testing and debugging tasks
	Using applet messages
	Summary

	Chapter 22: Extending Siebel CRM Functionality with eScript
	Introduction to Siebel scripting
	Server and browser scripts
	Application event handlers
	Applet event handlers
	Business component event handlers
	Business service event handlers
	The script editor
	The script debugger
	The script performance profiler
	The Siebel eScript language
	Variable declaration and initialization
	Comments
	Blocks and functions

	Exception handling
	Cleaning up
	Siebel object interfaces
	Application object methods
	Applet object methods
	Business component methods
	Business object methods
	Business service object methods
	Property set object methods

	When to use Siebel scripting
	Creating a custom business service
	Case study example: retrieve person information with eScript
	Creating a business service definition
	Creating custom functions

	Detailed discussion of the example code
	Variable declarations
	Executing a query
	Verifying the query result
	Reading values from business component fields
	Handling exceptions
	Cleaning up

	Declaring business service methods and arguments
	Testing and debugging scripts
	Compiling the object definition
	Setting breakpoints
	Running the Siebel application in debug mode
	Invoking the script code from the application
	Correcting code errors during debugging

	Summary

	Chapter 23: Advanced Scripting Techniques
	Browser scripting
	Preparing Siebel Tools for browser scripting
	Writing browser script
	Browser script example
	Monitoring changes on a specific field
	Exception handling
	Variable declaration
	Performing date calculations
	Changing control properties
	Displaying a confirmation dialog to the end user
	Interpreting the end user response
	Displaying error messages
	Continuing or canceling the flow of operation
	Testing and debugging browser scripts
	Extracting browser scripts using the genbscript utility

	Using translatable messages
	Invoking business service methods from server and browser script

	Tracing
	Considerations for script tracing

	Performance profiling
	Summary

	Chapter 24: Deploying Configuration Changes between Environments
	Repository migration
	Exporting and importing repository data
	Exporting and importing selected repository objects

	Exporting and importing administrative data
	Application Deployment Manager (ADM) overview
	Summary

	Appendix A: Installing a Siebel CRM Self-Study Environment
	Hardware requirements
	Third-party software requirements
	Downloading and extracting Siebel CRM software installers
	Registering at Oracle E-Delivery
	Understanding the license agreement
	Downloading the installation archives
	Extracting the installation archives
	Downloading Oracle Siebel documentation
	Extracting the Siebel installers
	Adjusting the browser security settings

	Installing Siebel CRM client software
	Installing the Siebel Mobile Web Client
	Installing the Siebel sample database
	Installing Siebel Tools
	Configuring Siebel Tools to connect to the sample database
	Using the Demo Users Reference

	Appendix B: Importing Code Files
	Importing Siebel Tools archive files (SIF)
	Importing administrative data files

	Appendix C: More Information
	Getting trained
	Finding information
	The Siebel Bookshelf
	Oracle forums
	My Oracle Support
	The internet community

	Index

